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ABSTRACT 
 
In our work we simulate a community of agents, linked 
into a simple social network based on communication 
among the nodes, who must take a binary decision at 
every step. This resembles the original Minority Game 
(MG), which is a simple, generalized framework, 
belonging to the Game Theory field, which represents 
the collective behaviour of agents in an idealized 
situation where they have to compete through adaptation 
for some finite resource. It generalizes the study of how 
many individuals may reach a collective solution to a 
problem under adaptation of each one’s expectations 
about the future. The main differences between this 
work and the original MG are the introduction of 
communication among the agents, which are now 
grouped basing on the common choices, and the number 
of players, that can also be an even number, while in the 
MG must be an odd number. This is done in order to 
generalize as much as possible the study of the choices 
made by agents trying to be in the minority group. Two 
communication protocols are implemented in the model: 
the asynchronous one, in which the agents act 
sequentially. So the first agents which act take their 
decision, and from then on they reply to the other agents 
with the new decision taken. The synchronous protocol 
states that the agents always communicate to the others 
their original opinion: they broadcast their opinion to all 
the agents which are linked to them. Finally, after 
having collected all the opinions of their friends, they 
reconsider their choice. After examining some random 
choosing agents, we embed a sort of memory into them, 
so that they can reason on which has been the best 
choice by looking at the past n results. 
 
 
 
INTRODUCTION 
 
Game Theory is a distinct and interdisciplinary approach 
to the study of strategic behaviour. The disciplines most 
involved in game theory are mathematics, economics 

and the other social and behavioural sciences. Game 
theory (like computational theory and so many other 
contributions) was founded by the great mathematician 
John von Neumann. The first important book was The 
Theory of Games and Economic Behaviour, which von 
Neumann wrote in collaboration with the great 
mathematical economist, Oskar Morgenstern. Certainly 
Morgenstern brought ideas from neoclassical economics 
into the partnership, but von Neumann, too, was well 
aware of them and had made other contributions to 
neoclassical economics. 
The key link between neoclassical economics and game 
theory was and is rationality. Neoclassical economics is 
based on the assumption that human beings are 
absolutely rational in their economic choices. 
Specifically, the assumption is that each person 
maximizes her or his rewards - profits, incomes, or 
subjective benefits - in the circumstances that she or he 
faces. This hypothesis serves a double purpose in the 
study of the allocation of resources. First, it narrows the 
range of possibilities somewhat. Absolutely rational 
behaviour is more predictable than irrational behaviour. 
Second, it provides a criterion for evaluation of the 
efficiency of an economic system. If the system leads to 
a reduction in the rewards coming to some people, 
without producing more than compensating rewards to 
others (costs greater than benefits, broadly) then 
something is wrong. Pollution, the overexploitation of 
fisheries, and inadequate resources committed to 
research can all be examples of this.  
In neoclassical economics, the rational individual faces 
a specific system of institutions, including property 
rights, money, and highly competitive markets. These 
are among the "circumstances" that the person takes into 
account in maximizing rewards. The implications of 
property rights, a money economy and ideally 
competitive markets is that the individual needs not 
consider her or his interactions with other individuals. 
She or he needs consider only his or her own situation 
and the "conditions of the market." But this leads to two 
problems. First, it limits the range of the theory. Where-
ever competition is restricted (but there is no 
monopoly), or property rights are not fully defined, 
consensus neoclassical economic theory is inapplicable, 
and neoclassical economics has never produced a 
generally accepted extension of the theory to cover these 
cases. Decisions taken outside the money economy were 
also problematic for neoclassical economics.  
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Game theory was intended to confront just this problem: 
to provide a theory of economic and strategic behaviour 
when people interact directly, rather than through the 
market. In game theory, "games" have always been a 
metaphor for more serious interactions in human 
society. Game theory may be about poker and baseball, 
but it is not about chess, and it is about such serious 
interactions as market competition, arms races and 
environmental pollution. But game theory addresses the 
serious interactions using the metaphor of a game: in 
these serious interactions, as in games, the individual's 
choice is essentially a choice of a strategy, and the 
outcome of the interaction depends on the strategies 
chosen by each of the participants. On this 
interpretation, a study of games may indeed tell us 
something about serious interactions. 
In neoclassical economic theory, to choose rationally is 
to maximize one's rewards. From one point of view, this 
is a problem in mathematics: choose the activity that 
maximizes rewards in given circumstances. Thus we 
may think of rational economic choices as the "solution" 
to a problem of mathematics. In game theory, the case is 
more complex, since the outcome depends not only on 
my own strategies and the "market conditions," but also 
directly on the strategies chosen by others, but we may 
still think of the rational choice of strategies as a 
mathematical problem - maximize the rewards of a 
group of interacting decision makers - and so we again 
speak of the rational outcome as the "solution" to the 
game. 
 
THE MINORITY GAME 
 
The Minority Game (MG) is a simple, generalized 
framework, belonging to the Game Theory field, which 
represents the collective behaviour of agents in an 
idealized situation where they have to compete through 
adaptation for some finite resource. 
 
While the MG is born as the mathematical formulation 
of “El Farol Bar” problem considered by (Arthur, 1994), 
it goes way beyond this one, since it generalizes the 
study of how many individuals may reach a collective 
solution to a problem under adaptation of each one’s 
expectations about the future. In (Arthur, 1994) the “El 
Farol Bar” problem was posed as an example of 
inductive reasoning in scenarios of bounded rationality. 
The kind of rationality which is usually assumed in 
economics – perfect, logical, deductive rationality – is 
extremely useful in generating solutions to theoretical 
problems, but it fails to account for situations in which 
our rationality is bounded (because agents can not cope 
with the complexity of the situation) or when ignorance 
about other agents ability and willingness to apply 
perfect rationally lead to subjective beliefs about the 
situation. Even in those situations, agents are not 
completely irrational: they adjust their behaviour based 
on what they think other agents are going to do, and 
these expectations are generated endogenously by 
information about what other agents have done in the 
past. On the basis of these expectations, the agent takes 
an action, which in turn becomes a precedent that 

influences the behaviour of future agents. This creates a 
feedback loop: expectations arise from precedents and 
then create the actions which, in turn, constitute the 
precedents for the next step. 
 
The original formulation of “El Farol Bar” problem is as 
follows: N people, at every step, take an individual 
decision among two possibilities. Number one is to stay 
at home; number two is to go to a bar. Since the space in 
the bar is limited (finite resource), the time there is 
enjoyable if and only if the number of the people there 
is less than a fixed threshold (aN, where a<1). Every 
agent has his own expectation on the number of people 
in the bar, and according to his forecast decides whether 
to go or not. The only information available to the 
agents is the number of people attending the bar in the 
recent past; this means that there is no deductively 
rational solution to this problem, but there can be plenty 
of models trying to infer the future number according to 
the past ones. 
 
The other very interesting aspect of the problem is that 
if most agents think that the number of people going to 
the bar is > aN then they won't go, thus invalidating 
their own prevision. Computer simulations of this model 
shows that the attendance fluctuates around aN in a 
(aN,(1 - a)N) structure of people attending/not 
attending. The “El Farol Bar” problem has been applied 
to some proto-market models: at each time step agents 
can buy (go to the bar) or sell an asset and after each 
time step, the price of the asset is determined by a 
simple supply-demand rule. 
 
The MG has been first described in (Challet and Zhang, 
1997) as a mathematical formalization and 
generalization of “El Farol Bar” problem. It is assumed 
that an odd number of players take a decision at each 
step of the simulation; the agents that take the minority 
decision win, while the others loose. Stepping back to 
“El Farol Bar” problem, we can see it as a minority 
game with two possible actions: a1 = 1 (to go to the bar) 
and a2 = -1 (not to go to the bar). After each round, the 
cumulative action value A(t) is calculated as the sum of 
each value given to the single actions. The minority rule 
sets the comfort level at A(t) = 0, so that agent is given a 
payoff -ai(t)g[A(t)] at each time step with g an odd 
function of A(t). 
 
INTRODUCING COMMUNICATION AMONG 
AGENTS 
 
The “El Farol Bar” problem, as well as the Minority 
game in its original formulation state that there is no 
communication among the agents involved in the 
simulation; the idea in this paper is to introduce in the 
model a sort of a social network, in order to see how the 
links among certain agents can change the results of the 
simulation. A social network is defined as “a set of 
nodes - e.g. persons, organizations - linked by a set of 
social relationship - e.g. friendship, transfer of funds, 
overlapping membership - of a specific type” (Laumann, 
et al., 1978). 



In our case the minority rule will be very easy: a set of 
N agents will have to choose between (-1) and (1). Who 
is in the minority (denoted with n < N) wins and gets a 
payoff equal to N/n: the fewer agents stay in the 
minority, the higher the payoff. Also the social network 
involved will be quite simple, just linking an agent to 
others with a relation limited to the possibility of asking 
a question: “will you choose (-1) or (1)?”. Not all the 
agents will be connected, though, so that some of them 
will have to make a prevision just considering the past 
few results, exactly like in the original MG. The 
described situation is depicted in figure 1 (in which we 
have twelve agents and eight links). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Simple Social Network 
 
In the presented model the communication among 
agents is bi-directional, meaning that if agent A can ask 
agent B, then agent B can ask agent A. 
 
AGENT BASED SIMULATION 
 
In (Ostrom 1988), agent based simulation is described as 
a third way to represent social models, being a powerful 
alternative to other two symbol systems: the verbal 
argumentation and the mathematical one. The former, 
which uses natural language, is a non computable way 
of modelling though a highly descriptive one; in the 
latter, while everything can be done with equations, the 
complexity of differential systems rises exponentially as 
the complexity of behaviour grows, so that describing 
complex individual behaviour with equations often 
becomes an intractable task. Simulation has some 
advantages over the other two: it can easily be run on a 
computer, through a program or a particular tool; 
besides it has a highly descriptive power, since it is 
usually built using a high level computer language, and, 
with few efforts, can even represent non-linear 
relationships, which are tough problems for the 
mathematical approach. According to (Gilbert, Terna 
2000): 
 
“The logic of developing models using computer 
simulation is not very different from the logic used for 
the more familiar statistical models. In either case, there 
is some phenomenon that the researchers want to 
understand better, that is the target, and so a model is 

built, through a theoretically motivated process of 
abstraction. The model can be a set of mathematical 
equations, a statistical equation, such as a regression 
equation, or a computer program. The behaviour of the 
model is then observed, and compared with 
observations of the real world; this is used as evidence 
in favour of the validity of the model or its rejection” 
 
In Remondino (2003) we read that computer programs 
can be used to model either quantitative theories or 
qualitative ones; simulation has been successfully 
applied to many fields, and in particular to social 
sciences, where it allows to verify theories and create 
virtual societies. In order to simulate the described 
problem, multi-agent technique is used. Agent Based 
Modelling is the most interesting and advanced 
approach for simulating a complex system: in a social 
context, the single parts and the whole are often very 
hard to describe in detail. Besides, there are agent based 
formalisms which allow to study the emergency of 
social behaviour with the creation and study of models, 
known as artificial societies. Thanks to the ever 
increasing computational power, it's been possible to use 
such models to create software, based on intelligent 
agents, which aggregate behaviour is complex and 
difficult to predict, and can be used in open and 
distributed systems. The concept of Multi Agent System 
for social simulations is thus introduced: the single 
agents have a very simple structure. Only few details 
and actions are described for the entities: the behaviour 
of the whole system is a consequence of those of the 
single agents, but it's not necessarily the sum of them. 
This can bring to unpredictable results, when the 
simulated system is studied. 
 
There are many toolkits and frameworks that can be 
used to build agent based simulations; for this work JAS 
was selected (http://jaslibrary.sourceforge.net) since it 
includes graph support for Social Netwok Analysis. In 
the basic model we present in this paper we only 
examine how many agents change their own opinion, 
when increasing the number of direct relations among 
them; further work will address some other issues, such 
as the correctness of the agents’ choice, and so on. 
 
THE SIMULATION FRAMEWORK 
 
At the beginning of the simulation, during the setup, we 
create a simple world populated by N agents. These 
agents can be considered as the vertexes of a social 
network and the links among them (relations) as the 
edges. The network is directed and every arc is 
composed by two edges with opposite directions. Every 
agent has a list of F (friends) other agents (called 
friendsList) to whom he can ask. This list is composed 
by the neighbours, i.e. the vertexes linked to the 
examined vertex (the agent). 
 
Here follows a brief description of the simulation 
process: 
 



• At the beginning of each simulation step, every 
agent has its own forecast. The forecast is absolutely 
random between two choices –1 and +1. 
• The decision taken by each agent (before 
communicating with others) is denoted with a “certainty 
index” equal to 1 (100%). 
• Now an agent is randomly chosen. He starts asking 
to the first in the list; if this one has the same prevision, 
then the certainty index is increased by a value of 1/F, 
while if the prevision is different, than the certainty 
index is lowered by 1/F 
• After having asked to all the friends in his list, the 
agent takes the final decision: if the certainty index is 
equal or greater than 1, then the decision will be the 
other possible one, i.e. the minority one. If it’s lower 
than 1, then the decision will be the original one. 
 • Another agent is then randomly chosen, and so on 
(the same agent can’t be chosen twice during the same 
turn). Note that an agent that’s been asked can still 
change his mind, basing on the agents he will in turn ask 
 
Before starting the simulation, we can change two core 
parameters: the number of the agents involved and the 
number of the links among the agents. Here we examine 
three runs of the simulation, one with 1000 agents and 
500 total links (an average of one link every two 
agents); the other one with 100 agents and 500 links (an 
average of five links for every agent) and the last one 
with 100 agents and 5000 links (fifty links for every 
agent). In every run we iterate the minority game for 
1000 times. The model could be considered as some 
groups of friends that must choose between two 
alternatives: pub and disco. They try to select the 
minority one in order to avoid queues or to find some 
more parking lots available. They communicate the 
selected choice to their friends, elaborate them and then 
take a final decision. 
 
In the output graph we can read the time on x-axis (1000 
iterations of the game), and we plot two lines: the red 
one (the lower one in the graphs) depicts the decisions 
changed while the blue one (the upper one) is for 
unchanged decisions.  
 
In y-axis we read the number of decisions (changed or 
not) the scale (10^1, 10^2, 10^3) depends from agents 
number. We choose as standard example a world of 100 
agents and 500 relations (figure 2), in which an average 
of 65 out 100 preserve their original decisions. 
 
In a second run we imagine a different situation, in 
which the agents have many more relations among 
them: an average of fifty for every inhabitant (figure 3). 
 
A simple common sense rule states that the more 
relations, the higher is the probability to change opinion. 
 
 

 
 

Figure 2: 100 agents and 500 relations 
 
 
 
 

 
 

Figure 3: 100 agents and 5000 relations 
 
 
This example proves the rule to be right and our model 
to be consistent with real world results; we can now try 
a counter example, i.e. a poor relations world, as the one 
in figure 4; one thousand inhabitants with a total of just 
five hundred relations. 
 
 

 
 

Figure 4: 1000 agents and 500 relations 
 
 
Here we can observe that less than 20% of the agents 
changed their opinion. In order to test the extreme 
situation, we also imagined a world with no relations 
among the agents (like in the original MG). 
 
 
 
 



SYNCHRONOUS COMMUNICATION 
 
A step further is the implementation of a different 
communication protocol among agents. 
 
The first we used is an asynchronous one: the agents act 
sequentially. So the first agents to act take a decision, 
and from then on they reply to the other agents with the 
new decision taken. We wonder if this method can be 
realistic, so we decided to explore also a synchronous 
communication process, which seems more similar to 
the one we would have in a real world.  Now the agents 
always communicate to the others their original opinion: 
they broadcast their opinion to all the agents which are 
linked to them. Finally, after they collect all the opinions 
of their friends, they evaluate the certainty index and 
reconsider their choice. We executed the simulation 
with the new rule and the same parameters as before. 
 
 

 
 

Figure 6: 100 agents and 500 relations 
 
In the first example (figure 6) we have a ten percent 
more changed opinions, than we had in the sequential 
model. 
 
 

 
 

Figure 7: 100 agents and 5000 relations 
 
 

The best result is in the second run (figure 7): the world 
rich of relations. The two lines are quite overlapped 
(even if there is a high variance in data). We can now 
express a second simple rule coming from this analysis: 
a synchronous communication among the agents 
increases their attitude to change opinion, which is at 
least ten percent higher. 
 

The proof is the third run, in which again we have an 
higher result when compared to the asynchronous case. 
 
MEMORY AND REWARDING 
 
In this section we investigate how the introduction of a 
simple kind of memory, based on the past turns, can 
change the previous results Besides, we introduce a 
payoff system to reward the players in the minority. The 
memory is a list of length N (technically we can use the 
same length for all the agents or randomize it using a 
range from 1 to 20). In each “box” we add the last 
cumulate choice of the group to which the agent 
belongs. The value is normalized and is +1, if the sum 
of choices is >0, or -1, if the sum is ≤ 0. The agent uses 
its memory by reading the list, and summing the last 
group choices. The agent choice will be +1, if the sum is 
lower than 0, that means the mode of the group is –1; –1 
in the opposite situation; or can be random, if there is no 
prevailing result.  
 

 
 

Figure 8: 1000 agents and 500 relations 
 
We also introduce a network graph in which we can 
observe the topology and the agents changing their 
colours, red for “+1” and green for “-1”; this can be 
observed in figure 9. 

 

 
 

Figure 9: 10 agents and 10 relations topology 



 
Figure 9 is an interesting experiment composed by 10 
agents and 10 relations, using memory and sequential 
communication. 
 
Looking at the graph we can observe that every group is 
in equilibrium. In fact, according to bounded rationality, 
each agent  knows only the information about his own 
neighbours. Observing each agent’s point of view, there 
are triplets Green-Red-Green or Red-Green-Red in 
perfect equilibrium, in which every agent respects the 
minority rule. The agents reach an elevated global 
optimum (Figure 10) of eight out ten. 
 

 

 
 

Figure 10: 10 agents and 10 relations, rewards 
 
The stability of the system is strengthen by the steady 
distribution observed in figure 11. In fact, the changing 
opinion node is usually the isolated one. 
 

 

 
 

Figure 11: 10 agents and 10 relations, changed choices 
 

The rewarding system counts one point for every agent 
that chooses a (local) minority option. 

 
CONCLUSIONS 
 
While the original Minority Games states that the agents 
involved must take a decision based on the historical 
data, their own experience and the forecasts about what 
the others will choose, in this paper we introduced 
communication among them, in order to see how the 
decision process would change. The stress here is not on 
the decision taken, be it the best or the worst, but on 
how the agents can change their decision when they are 
linked in a social network; in particular, we tried to find 
the empiric proof to a common sense rule: with a fixed 

number of agents, the more the links, the higher is the 
probability to change opinion. We built an agent based 
simulation, tested some real world parameters and 
analyzed the results we obtained. 
 
We examined two different communication protocols 
among the agents: the asynchronous one and the more 
realistic synchronous one, in order to see how this could 
affect the way the agents changed their opinions. Using 
the synchronous communication, the one in which an 
agent communicates with all the ones linked with him at 
the same time, we saw that the attitude to change 
opinion is at least 10% higher than in the asynchronous 
case, in which the agents act sequentially. 
 
At last, we reintroduce a sort of memory, based on the 
past experiences, to act as a selection mechanism. In 
conjunction with communication, the so composed 
simple cognitive system of agents creates local stable 
equilibria. 
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