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Abstract

Forecasting based on random intercepts models requires imputation of the in-

dividual permanent effects, when direct estimates are not available. If current out-

comes are observed, this involves sampling from conditional distributions, which

might be computationally burdensome. I review alternative approaches, from as-

suming null individual effects in forecasting, to regression-based imputation of the

individual intercepts, and show their shortcomings. I then present an algorithm for

drawing individual permanent effects from a conditional distribution which only

requires to invert the corresponding estimated unconditional distribution. The al-

gorithm, labeled Rank method, solves the optimal assignment problem in linear

problems and offers a good approximation in binary response models. It only re-

quires matching two ranks and works in N logN time. It is useful in linear models

with fixed effects, and in binary response models with fixed or random effects.
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1 Introduction

In this paper I present a new method for assigning individual specific effects to a popula-

tion when no estimates are available, at the individual level. This generally happens when

the population to be simulated (the population sample) is different from the population

on which the model has been estimated (the estimation sample). The method is relevant

for projecting forward in time models with unobserved heterogeneity (UH). UH generally

comes in the form of fixed effects or random effects (‘random intercept’) models, where

the deviations from the conditional expectation function are specified as

ei,t = αi + ui,t (1)

with αi being the individual-specific effect, that is, permanent UH, and ui,t a random

component. The method described here is useful in linear models with fixed effects, and

in binary response models with fixed or random effects.

Linear and binary choice models differ in the amount of information that can be

obtained about the (unobserved) random intercepts. In linear models, non-parametric

estimates of the individual random intercepts can always be obtained.1 If we are con-

cerned with projecting forward in time the estimation sample, the estimated individual

intercepts will simply be treated as additional covariates.2 In binary choice models the

individual effects are in general not separately identifiable, and one has to content with

an estimate of their standard deviation in a random effects setting; only inconsistent esti-

mates of the individual intercepts can be recovered with fixed effects estimation.3 How to

make out-of-sample predictions in such models is therefore a non-trivial problem.4 More-

1In addition, a parametric estimate of the shape of their distribution is also obtained, under the
random effects assumption.

2This is generally done automatically by standard statistical packages, e.g. with the predict, xbu

post-estimation command in Stata, after a xtreg model is run.
3The inconsistency of the fixed effects maximum likelihood estimates of nonlinear models in finite

samples originates from the incidental parameters problem (the fact that the number of parameters
grows linearly with population size) and affects also the estimates of the other coefficients (Neyman and
Scott, 1948; Moon et al., 2014). The conditional logit approach circumvents this problem by maximizing
the likelihood of the observed outcome yi = (yi,1, yi,2, · · · , yi,T ) conditional on

∑
t yi,t, which does not

involve the αi.
4In Stata the predict, pc1 post-estimation command after a xtlogit, fe fixed effects regression

predicts the probability of a positive outcome conditional on one positive outcome within the group; no
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over, in both linear and binary models an issue arises if the estimates have to be applied

to a different sample, for which the individual effects are (by definition) unobservable.5

Such a situation is indeed common, for instance in dynamic microsimulation. Mi-

crosimulation models generally include different processes (like schooling, household for-

mation, labor market transitions, retirement, etc.): it is quite unlikely that a single

dataset exists with all the relevant variables so that it can be used both for estimation of

all processes and as a basis for simulation. A more common situation is to estimate dif-

ferent processes on different datasets, and than apply the estimated coefficients to some

initial population to be simulated forward in time. True, to simulate we need informa-

tion on all the variables included in the empirical specifications, but this falls short from

requiring the union of all the datasets used for estimation, as (i) we do not need the lon-

gitudinal dimension required for dealing with UH, (ii) we do not even need retrospective

information if the empirical specifications only include first order lags, as the base year

values will become lagged values in the first year of the simulation, and (iii) we might

impute missing information from other donor datasets6.

Even when the initial population coincides with the estimation sample, it is often the

case that it needs to be expanded over time, for instance to include partners, offsprings,

or immigrants. These new individuals entering the simulation might come with a previ-

ous history of outcomes as well: not only in the case of spouses and foreigners, but also

of newborns. If this sounds bizarre, consider that many datasets register information

only for individuals above a minimum age: for instance, EU-SILC have data only for

those aged 16+. Given the wide coverage of the EU-SILC survey, this is a likely feeder

of a microsimulation model for European countries. In this case, newborns enter the

microsimulation at age 16, after having already experienced meaningful education and

labor market choices/lotteries.

Finally, even with cohort models where the evolution of a single cohort of individuals is

simulated through time, it is quite likely that the cohort is not observed from birth, so

similar commands are available after a random effects regression.
5In this case, the out-of-sample nature of prediction regards both time and the units of analysis.
6By converse, estimating the models on imputed data would impinge on the properties of the esti-

mates (Rubin, 1976; Little and Rubin, 1987).
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that individuals enter the microsimulation with a previous history of outcomes.

Four broad classes of solutions can be conceived to the problem of assigning a random

intercept to each individual in the simulation sample. First, we can simply forget the

problem, set all random intercepts to zero, and take into account only the observables in

simulating the outcomes of interest. This is often done and, as we will see, can be justified

on some grounds, in particular when the model is linear. In nonlinear models, however,

setting the random intercepts to zero in the simulation introduces a non-negligible bias

in the projections. Second, we can impute the missing variables in the simulation sam-

ple from their estimated counterparts in the estimation sample by means of a regression

model where the estimated random intercepts are modeled as a function of the observ-

able explanatory variables and the outcome variable(s). This however offers only a partial

solution, as we shall see, since it distorts the distribution of the random intercepts; more-

over, this approach is feasible only when the individual effects are separately identified in

the estimation sample, that is when the model is estimated with fixed effects. Third, we

can draw the individual effects from the estimated distributions of the random intercepts,

conditional on the observed past outcomes. This is trivial in linear models with Gaus-

sian random effects, less straightforward in linear models with fixed effects, where the

fixed effects follow an arbitrary distribution, and in binary response models with random

or fixed effects. Fourth, we can sample from the unconditional (paramdetric or empiri-

cal) estimated distributions of the random intercepts, and then assign to each individual

the value for UH that best matches his observed past outcomes, among those sampled.

Methods for solving this optimal assignment problem can be borrowed from the linear

programming literature. However, they work in (third or fourth order) polynomial time:

this might be an impediment in forecasting exercises that involve hundreds of thousands

or even millions of individuals, as is common in dynamic microsimulation models (Li and

O’Donoghue, 2013). Moreover, as we shall see in nonlinear models the optimal assign-

ment solutions introduce an artificial correlation between the imputed individual effects

and the covariates.

A critical review of these approaches is the first contribution of the paper: to the
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best of my understanding, this is novel in the literature, with the exception of a brief

overview in Panis (2003). The second contribution is the development of a new assignment

algorithm —labeled the Rank method— which works in quasi-linear (NlogN , where N

is the sample size) rather than polynomial time, and provides an optimal imputation of

the individual effects in linear regression models. In such models, the Rank method is

valuable when the estimates are performed with fixed effects, as it only requires sampling

from the unconditional estimated distribution of the individual effects, which is simple

no matter the shape of the distribution. Moreover, when applied to binary response

models the Rank method provides a reasonable approximation of the optimal assignment

solution, while reducing the artificial correlation between the imputed individual effects

and the explanatory variables.

The paper proceeds as follows. Section 2 introduces two illustrative models that will

be used throughout the paper —a continuous response linear model and a binary response

latent variable model. The following sections discuss alternative approaches to the prob-

lem of assigning the unobserved individual intercepts: section 3 discusses whether and

when simulating UH leads to better forecasts; section 4 shows the shortcomings of im-

puting the random intercepts via a regression model; section 5 describes the Bayesian

solution to the imputation of the random intercepts, which involves deriving the condi-

tional distributions and then sampling via the Inverse Transform (IT) method; section

6 explains how the problem is approached in a linear programming setting, leading to

solutions which have computational complexity of polynomial order and forcing the cor-

relation between the imputed random intercepts and the explanatory variables in the

binary case. The final sections are devoted to the Rank method: section 7 presents the

algorithm and shows that it solves the optimal assignment problem in linear models, while

section 8 shows that the application of the Rank method to binary response models leads

to an increase in the forecasting error with respect to the optimal assignment solution,

but reduces the induced correlation problem. Section 9 concludes.
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2 Empirical setting: linear and binary response mod-

els

As a basis for discussion, I consider two benchmark cases. Eq. (2) refers to a simple

linear model, where the (observed) continuous response is y∗. If we assume, by converse,

that y∗ is a latent (unobserved) variable, and that only a discrete 0-1 outcome y can be

observed, we get the standard binary response model of eq. (3).

y∗i,t = x′i,tβ + ui,t + αi (2)

with E(U) = E(A) = 07, and

yi,t =


1 if y∗i,t ≥ 0

0 otherwise

(3)

Hereafter, I’ll refer to the two models above, by assuming that either y∗ (continuous

response model) or y (binary response model) is observable. Estimates for the effect β̂

of the explanatory variables x, net of the effects of UH, are obtained. If the model is

linear, estimates of the individual intercepts α̂i are also obtained, together with estimates

of the standard deviation of U and A. If the model is binary, a consistent estimate of

the standard deviation of A is obtained with random effects, while only asymptotically

biased estimates of the individual intercepts α̂i can be recovered with fixed effects.

The model must then be applied to a population j = 1 · · ·N , for which we know, at

the beginning of the simulation at time s = 0, only the observable characteristics xj,0

and yj,0. While β̂ can be directly used to construct the predicted outcome, a problem

arises in assigning each simulated individual j a specific random intercept α̃j.

A simple solution is to set α̃j = 0 to each individual in the simulation sample. An-

other solution, which is possible only when estimates of the individual intercepts are

available, is to treat the individual intercepts as missing variables which can be imputed

7I denote random variables with capital letters, and their realization with small letters.
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by standard regression-based or matching techniques (Pickles, 2005; Howell, 2008) from

their estimated value in the estimation sample. I’ll now discuss what are the implications

of these two strategies.

3 What if unobserved heterogeneity is neglected in

forecasting?

Suppose that forecasts are evaluated on the basis of the mean squared forecasting error,

at some future time s:

MSFE(υs) =
∑
j

(υj,s − υ̃j,s)2/N (4)

where υ = {y∗, y}. We want to minimize the expected value of MSFE(υ), and in particu-

lar we want to know whether (and possibly under which circumstances) setting α̃j = 0 ∀j

is a good forecasting strategy.8

As it turns out, the answer depends on whether we are considering a linear or a non-

linear model. In linear models, there is a trade-off as imputing UH allows for a better

description of the simulated individuals but at the same time introduces an additional

noise factor in the forecasts: the key question therefore is whether Ã is a decent predictor

of A or not. In non-linear models, in addition to this trade-off, there is a non-negligible

bias that is introduced in the projections if UH is not considered; this offers a strong case

for imputing UH.

Proposition 1. In the linear model of eq. (2), setting α̃ = 0 leads to a higher MSFE

unless Ã is a poor predictor of A. If β̂ is consistent, or if the individual effects are

uncorrelated with the observables, the condition for this to happen is σAÃ <
σ2
Ã

2
, where

σAÃ is the covariance between the true and the imputed individual effects.

8What I’m discussing here is setting α̃ to 0 but using the UH-corrected coefficient β̂, not estimating
the model without UH as for instance Panis (2003) does. Given that neglecting UH in forecasting implies
an underestimation of the persistence of the outcome over time, one could consider estimating a model
with lagged endogenous variable and without UH, and then use the estimated coefficients for forecasting.
By doing so, the coefficient of the lagged endogenous variable (measuring true state dependency) would
be biased upward, but will catch part of the effect of UH. Such specification would however fail to pass
the Lucas critique and possibly lead to distorted policy prescriptions.
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Proof. I compute for each individual the expected squared forecasting error (ESFE), and

then I average over all individuals.

The expected squared forecasting error, given αj and α̃j, is

ESFEj,s = EU

[
(Y ∗j,s − Ỹ ∗j,s)2|αj, α̃j

]
(5)

= EU

[
(x′j,s(β − β̂) + U + αj − α̃j)2

]
= σ2

U + (αj − α̃j)2 + 2x′j,s(β − β̂)(αj − α̃j)

If β̂ is consistent, the last term vanishes as the sample size increases, and the condition

for α̃j = 0 leading to a better forecast is (αj− α̃j)2 > α2
j , which implies α̃j(α̃j−2αj) > 0.

This is satisfied, when αj is positive, only if α̃j < 0 or α̃j > 2αj, and when αj is negative,

only if α̃j < 2αj or α̃j > 0, that is when the imputed random intercept is far apart its

true value.

On average over the simulated population, the expected value of the MSFE is

E
[
MSFEs

]
= EA,Ã

[
ESFEj,s

]
= σ2

U +σ2
A+σ2

Ã
−2σAÃ+2(β−β̂)Ex,A,Ã

[
x′j,s(αj−α̃j)

]
(6)

where σ2
Ã
→ σ̂2

A is the estimated variance of the random intercept, which converges as

the sample size grows bigger to the true variance, and σAÃ is at most equal to σ2
A (when

the random intercepts are perfectly imputed).

The last term drops out if the individual effects are uncorrelated with the observables

(as in a fixed effect model) or, in the limit, if the β̂ coefficients are consistent. The

condition under which it becomes optimal not to impute UH is therefore

σAÃ <
σ2
Ã

2
(7)

that is, when Ã is a poor predictor of A.

In addition to the proposition above, it should be considered that neglecting UH

(in simulation) introduces a break at the individual level between the past (for which

outcomes depend on the true individual effect) and the future (for which outcomes depend
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only on observables), thus making overall simulated life trajectories more cumbersome.

This can have important consequences, for instance with respect to eligibility to social

benefits, seniority accrual, etc.

The same issues arise in the non-linear case (although the math is more involved

—see Appendix A). Moreover, in non-linear models there is an additional drawback

from imputing a null UH to the simulated population, which shows up also when the

simulated individuals enter the simulation without a history of previous outcomes. To see

where it comes from, suppose two individuals have the same observables, but they differ

because of UH: for the sake of illustration, suppose they have two symmetric individual

effects around the mean value of 0. The outcome variable is binary. Non-linearity of

the probit/logit transformation implies that the average probability of the event of the

two heterogeneous individuals is in general different from the probability of the average

individual, with the size of the bias depending on the standard deviation of the individual

effect and the direction of the bias depending on the local concavity of the probit or logit

transformation: imputing a null individual effect leads to overestimate the probability

of the event if the average probability is higher than .5, and to underestimate it if it is

lower.

Proposition 2. In the binary response model of eq. (3), setting α̃ = 0 leads to a bias in

forecasting, irrespective of the previous history of the simulated individuals.

Proof. In this setting, we have Pr
[
yj,s = 1

]
= FU

(
x′j,sβ + αj

)
and Pr

[
ỹj,s = 1

]
=

FU
(
x′j,sβ̂+ α̃j

)
. Let z = x′j,sβ+αj and z̃ = x′j,sβ̂+ α̃j. A second order Taylor expansion

of FU(z) and FU(z̃) around x′j,sβ and x′j,sβ̂ respectively gives

FU (z) = FU
(
x′j,sβ

)
+ fU

(
x′j,sβ

)
αj +

1

2
f ′U
(
x′j,sβ

)
α2
j + h2

(
x′j,sβ

)
α2
j (8a)

FU (z̃) = FU

(
x′j,sβ̂

)
+ fU

(
x′j,sβ̂

)
α̃j +

1

2
f ′U

(
x′j,sβ̂

)
α̃2
j + h2

(
x′j,sβ̂

)
α̃2
j (8b)

and

EA [FU(z)|xj,s] = FU
(
x′j,sβ

)
+

1

2
f ′U
(
x′j,sβ

)
σ2
A (9a)
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EÃ [FU(z̃)|xj,s] = FY

(
x′j,sβ̂

)
+

1

2
f ′U

(
x′j,sβ̂

)
σ̂2
A. (9b)

Provided β̂ and σ̂2
A are consistent, EÃ [FU(z̃)|xj,s] is a consistent estimator of EA [FU(z)|xj,s]:

on average, the projections are correct, at the individual level. On the other hand, disre-

garding UH leads to EÃ [FU(z̃)|xj,s] = FU

(
x′j,sβ̂

)
. The sign of the bias, 1

2
f ′U

(
x′j,sβ̂

)
σ̂2
A,

depends on the concavity of the CDF FU , while its size depends on the variance of the

individual effect.9

In empirical applications the size of the bias is found to be of meaningful size. In a

related paper, Richiardi and Poggi (2014) estimate a dynamic random effect microsimu-

lation model of labor supply and household formation with lagged endogenous variables

and compare the projections under three scenarios: no imputation of UH, imputation

from the unconditional distribution of UH, and imputation from the conditional distribu-

tions of UH.10 Using the standard deviation of the random effect of female labor supply

estimated in that paper, it turns out that disregarding UH would artificially increase

the participation rate in the relevant population from 57.1% to 61.0% in the base year,

and from 65.0% to 73.2% in the final year of the simulation. Sampling from the un-

conditional estimated distributions of the individual effects prevents the forecasting bias,

hence getting cross-sectional statistics right, but introduces unnatural breaks in individ-

ual trajectories at the moment of imputation, therefore getting longitudinal statistics

wrong.11

After having motivated the need for imputing UH in the simulated sample, I now

turn to the intuitive solution of treating the individual intercepts as missing variables

which can be imputed by standard regression-based or matching techniques (Pickles,

2005; Howell, 2008) from their estimated value in the estimation sample, if available.

9Non-linearity of F also implies that the ML estimator for the β coefficients is biased.
10As a benchmark, a probit specification (without random effects) is also considered, thus addressing

the issue raised in footnote 8.
11The same applies in the simple probit specification without UH.
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4 Using the estimation sample as a donor dataset

With fixed effects, estimates of the individual intercepts α̂i can be obtained.12 It may be

therefore tempting to use the estimation sample as a donor dataset in order to impute

the individual intercepts in the simulation sample. One simple way of doing this is to

estimate

α̂i = x′i,tγ + δυi,t + εi,t (10)

where υ = {y∗, y}, and then use the estimated coefficients γ̂ and δ̂ in the simulation

sample to predict α̃j. Unfortunately, this approach has the drawback of distorting the

distribution of the imputed individual intercepts.

Proposition 3. In both the linear and the binary case, the distribution of the individual

random intercepts in the simulation sample imputed using

α̃j = x′j,0γ̂ + υ̂j,0 (10′)

where γ̂ and δ̂ are the coefficients of eq. (10) estimated on the estimation sample, is in

general different from the distribution of A.

Proof. In the linear case, by substituting y∗ in eq. (10′), we obtain

α̃j = x′j,0(γ̂ + δ̂β̂) + δ̂(αj + uj) (11)

from which it is immediate to see that the distribution of Ã is in general different from

the distribution of A.13

12As I have already noted, such estimates are consistent in a linear setting, and inconsistent (due to
the incidental parameters problem) in a binary setting.

13In particular, if the random effects assumption holds and the random disturbances A and U are
normally distributed, γ̂ + δ̂β̂ → 0 as the sample size increases, and the distribution of Ã is still asymp-

totically normal. We have var(Ã) = var(Ã|x) = δ2var(y∗|x)→ δ2(σ2
A + σ2

U ) and δ̂ = cov(Â,y∗)
var(y∗) =

σ2
A

σ2
A+σ2

U
,

from which we obtain, as the sample size grows larger,

var(Ã)→ σ4
A

σ2
A + σ2

U

6= σ2
A
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Similarly, in the binary case we get

α̃j = x′j,0γ̂ + δ̂[1(x′i,tβ + ui,t + αi > 0)] (12)

which is also not distributed as A.

This regression-based imputation procedure matches individuals in the simulation

sample with extrapolated individuals in the estimation sample, conditional on the specific

values of the observables in the simulation sample. Such a conditioning however implies

that in principle there might be no real individual, or more than one individual, in the

estimation sample that can be used as a donor for the missing variable in the simulated

individual. As a consequence, one has to resort to predicted values, and the uncertainty

of the prediction is added to the aleatory distribution of the estimated residuals. As an

alternative, it is possible to match each individual in the recipient dataset with a real

individual in the donor dataset —at the cost of obtaining a less perfect match— in order

to attribute the same estimated values of the random intercepts to the individuals in the

simulation sample. This would guarantee that the distribution of Ã resembles that of

A. In the linear case, one natural propensity score matching would entail computing the

estimated residuals êi = ȳ∗i − x̄′iβ̂ and ẽj = y∗j,0 − x′j,0β̂ respectively on the estimation

and the simulation sample, and then match individuals based on these two variables (ȳi

and x̄i being the average values of the observed outcome and explanatory variables for

individual i in the estimation sample). This is very similar to the imputation method I

propose, with the only difference that rather than matching the estimated residuals in the

simulation sample with their counterparts in the estimation sample, I match them with

simulated residuals, built by sampling from the unconditional estimated distributions of A

and U . This has the advantage that it only requires to estimate parametric distributions,

rather than individual intercepts, and it is thus in principle amenable to application to

settings where it is not possible to estimate individual intercepts —as in binary response

random effects models— or not advisable to use them —for instance when the number

of individuals in the estimation sample is too low.
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This shift in focus from imputation of random intercepts estimated in the estimation

sample to sampling from estimated distributions is common to other approaches in the

literature, which I now turn to.

5 Sampling from the conditional distributions

According to the Bayesian approach, the correct way of assigning random intercepts α̃j

to individuals with a previous history of outcomes B is sampling from the estimated

distribution of A, conditional on B. Applying Bayes theorem:

fA|B(α) =
fA(A = α) Pr(B|A)

Pr(B)
=
fA(A = α) PrU(B)

PrE(B)
(13)

where fA|B and fA are respectively the conditional and the unconditional distribution of A

with respect to B, and PrU(B) and PrE(B) the conditional and unconditional distribution

of B with respect to α.

Sampling from this distribution can be done by the Inverse Transform method: a

random number is extracted from the uniform distribution on [0, 1], which gives the

value of the conditional cumulative distribution function FA|B(α) =
∫
fA|B(α)dα; α̃ is

then assigned by inverting this function, using the estimated distribution of A, fÃ|B:

r ∼ U(0, 1)

α̃ = FÃ|B(r)−1 (14)

In our continuous response linear model the conditional PDF is:

fA|Y ∗=y∗(α, y∗) =
fA(A = α)fU(x′β + U + α = y∗)

fE(x′β + E = y∗)
=
fA(α)fU(y∗ − x′β − α)

fE(y∗ − x′β)
. (15)

If A and U are both Gaussian, with A ∼ N(0, σ2
A) and U ∼ N(0, σ2

U), this expression

reduces to

fA|Y ∗=y∗(α, y∗) ∼ N

(
ξU(y∗ − x′β)

ξA + ξU
,

1

ξA + ξU

)
, (16)
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with ξA = 1/σ2
A and ξU = 1/σ2

U . Individual effects are still normally distributed; when

outcome is below expected outcome based on observables (y∗−x′β < 0) they are centered

on a negative number, and vice versa.

In the binary response model the conditional PDFs are:

fA|Y=0(α) =
fA(A = α) Pr(x′β + U + α < 0)

Pr(x′β + U + A < 0)
=
fA(α)(1− FU(x′β + α))

1− FE(x′β)
(17a)

fA|Y=1(α) =
fA(A = α) Pr(x′β + U + α > 0)

Pr(x′β + U + A > 0)
=
fA(α)FU(x′β + α)

FE(x′β)
(17b)

These conditional distributions do not have in general a closed form, even in the case

when both the α and the u are normal, though they can be approximated by a normal

distribution with the Laplace method (Laplace, 1774, 1814). As an example, figure 1

depicts the conditional and unconditional distributions of the random intercepts, in a

binary response model with x ∼ N(−0.5, 2), β = 1, A ∼ N(0, 1), U ∼ N(0, 1): it can be

seen that the posterior distributions do indeed look quite normal.

Figure 1: Conditional and unconditional distributions of random intercepts, binary response model.
Parameterization: x ∼ N(−0.5, 2), β == 1, A ∼ N(0, 1), U ∼ N(0, 1), N = 100, 000.

Specifically, the posterior normal approximation is centered on the posterior mode,

while the variance is estimated by looking at the curvature of the posterior at the max-

imum.14 However, finding the mean and variance of the approximated normal distribu-

14Laplace Approximation methods are a family of deterministic algorithms that usually converges
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tions, conditional both on y and x, is not at all immediate, given that x might well be

continuous.

Another approach is to reconstruct the conditional distributions by Markov Chain

Montecarlo (MCMC) methods like Gibbs sampling (Casella and George, 1992; Bolstad,

2010). This is an algorithm for obtaining a sequence of observations which are approx-

imated from a specified multivariate probability distribution when direct sampling is

difficult.15 Unfortunately, application of this method is also not immediate, especially if

the estimates have not been performed in a Bayesian framework —see Gu et al. (2009) for

an application to a random effects binary probit model that allows for heteroscedasticity.

6 Optimal assignment

An alternative to the Bayesian procedure described above involves finding the distribu-

tion of individual effects that maximizes the (log)likelihood of observing the true data,

lnL =
∑N

j=1 lnLj,0. In the continuous response model, the individual contributions to

the likelihood function are

Lj,0(α̃) = Pr(Ỹ ∗ = y∗j,0|A = α̃j) = fU(y∗j,0 − x′
j,0β̂ − α̃j) (18)

while in the binary response model:

Lj,0(0, α̃) = Pr(Ỹ = 0|A = α̃j) = 1− FU(x′
j,0β̂ + α̃j) (19a)

Lj,0(1, α̃) = Pr(Ỹ = 1|A = α̃j) = FU(x′
j,0β̂ + α̃j) (19b)

Unconstrained maximization would require, in the linear case, setting α̃j = y∗j,0 −

faster than variational Bayes, much faster than MCMC, and just a little slower than Maximum Likelihood
Estimation (MLE) (Azevedo-Filho and Shachter, 1994). However, the Laplace approximation shares
many limitations of MLE, including asymptotic estimation with respect to sample size.

15In its basic version, Gibbs sampling is a special case of the Metropolis-Hastings algorithm. However,
in its extended versions it can be considered a general framework for sampling from a large set of variables
by sampling each variable (or in some cases, each group of variables) in turn, and can incorporate the
Metropolis-Hastings algorithm (or similar methods such as slice sampling) to implement one or more of
the sampling steps.
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x′
j,0β̂, that is, setting the individual intercept equal to the difference between the actual

outcome y∗j,0 and the predicted outcome based on observables only, x′
j,0β̂. However, this

would produce a distribution of the imputed random intercepts that resembles fE, rather

than fA, and is not therefore consistent with the estimation results. The distortion is

even clearer in the binary response case, where maximization of the likelihood is obtained

respectively for α̃j =∞ (yj,0 = 1) and α̃j = −∞ (yj,0 = 0).

The solution therefore is a two-step procedure: first, N individual random intercepts

are drawn from the estimated distribution of A; then, these random intercepts are opti-

mally assigned to the N individuals in the simulation sample. Formally, we must find a

permutation matrix [pk,j] where the index k refers to the random intercept and the index

j to the individual to be simulated that solves (Koopmans and Beckmann, 1957)

max
P

∑
k,j

Lk,jpk,j (20)

s.t.

pj,k = {0, 1} k, j = 1, · · · , N∑
j pk,j = 1 k = 1, · · · , N∑
k pk,j = 1 j = 1, . . . , N

The problem would in principle require to evaluate all N ! permutations of the indi-

vidual effects: for N = 100, this number is 10×10157. Standard optimal assignment algo-

rithms as the Hungarian (or Kuhn-Munkres) algorithm reduce this problem to polynomial

complexity (Carpaneto et al., 1988; Burkard et al., 2012). In particular, algorithms that

are easier to implement have O(N4) complexity, while more complicated ones have O(N3)

complexity. However, the assignment problem in a dynamic microsimulation model can

in principle involve hundreds of thousands or even millions of individuals, which makes

this approach feasible but still computationally burdensome.

An additional problem in the binary case is that any optimal assignment solution

(more than one solutions generally exist, in a binary setting) introduces an artificial

correlation between the imputed random intercepts and the observable characteristics.16

16The problem does not arise in the linear case, as the outcome fully reflects the value of the covariates.

17



To clarify, let’s suppose that the true individual effects and the explanatory variables are

indeed uncorrelated. The induced correlation problem arises from two sources that work

in opposite directions. First, any optimal solution assigns, on average, smaller residuals

to y0 = 0 individuals, and bigger residuals to y0 = 1 individuals. Since y0 = 0 individuals

have also, on average, lower values of the explanatory variables than y0 = 1 individuals,

this introduce a positive correlation between α̃ and x. Second, within each outcome

group any optimnal solution assigns small residuals to individuals with high values of

the explanatory variables (think of y0 = 0 individuals with a high value of the score,

which the algorithm tries to bring below zero) and big residuals to individuals with low

values of the explanatory variables (think of y0 = 1 individuals with a low value of the

score, which the algorithm tries to bring above zero). Hence, within each outcome group

a negative correlation between α̃ and x is introduced.

Which effect prevails depend on the distribution of x. If that distribution is narrow,

so that the average value of the explanatory variables in the y0 = 0 group is close to the

average value of the explanatory variables in the y0 = 1 group, the second effect predom-

inates, and we get an overall negative correlation. If on the contrary the distribution of

x is stretched, the first effect predominates, and we get an overall positive correlation.

To illustrate and test the relevance of the problem I set up to a Montecarlo analysis

with the following parameterization: N = 100,∼ N(0, σx), β = 1, A ∼ N(0, 1), U ∼

N(0, 1). For simplicity I assume again that β is estimated without errors: β̂ = β.

Figure 2 shows the value of the correlation coefficient between the imputed random

intercepts Â and the explanatory variable x, for the optimal solution of the assignment

problem in the binary response model, for different values of σX . For low values of σX

(UH is very important in determining the outcome) the correlation between Â and X is

negative; for higher values of σX the correlation turns positive.
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Figure 2: Correlation coefficient between the imputed random intercept Ã and the explanatory variable
x, optimal assignment, binary response model. Parameterization: x ∼ N(0, σx), β = β̂ = 1, A ∼
N(0, 1), U ∼ N(0, 1). For each value of σX 100 individuals are simulated. The Conditional Rank
method described in appendix C is applied).

7 The Rank method

The method proposed here for solving the optimal assignment problem in linear models

introduces two innovations on the approach reviewed above. First, it aims at assigning

total residuals ẽ0, rather than individual specific effects α̃.17 The ẽ0 are generated by

summing up random draws from the unconditional Â and Û distributions, and their α̃

components are used as estimates of the true random intercepts α. Second, it relies

on a new algorithm for assigning a ẽj,0 to each individual in the simulated population.

This algorithm is simpler to implement than the Hungarian method —hence it reduces

programming time18— and involves a lower computational complexity —hence it reduces

computing time.

The method works by minimizing the distance between the true errors e0 and the

simulated errors ẽ0, for the first (and only) period of observation in the simulation sample.

17In the linear case, setting ẽj,0 = y∗j,0 − x′
j,0β̂ would maximize the likelihood, as we have already

noted. An alternative solution of the assignment problem would require splitting each ẽj,0 in its two com-
ponents α̃j and ũj,0, under the distributional constraints fÃ = fÂ and fŨ = fÛ . Although conceptually
very simple, this approach is computationally quite demanding —except for very specific assumptions
about the two distributions— and requires in general multiple loops over the simulated population, each
involving extractions from the unconditional Â and Û distributions, until the distributional constraints
are satisfied.

18The method requires no more than a handful lines of code, while standard Matlab or Java imple-
mentations of the Hungarian algorithm consist in about 500 lines of code.
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However, the true errors are unobservables. Therefore, the method minimizes the distance

between some proxy of the true errors e0 and the simulated errors ẽ0. As ẽ0 are given,

the task is an assignment problem.

An obvious choice for this proxy in linear models are the regression residuals, that is

the difference between the observed outcome and the outcome predicted on the observ-

ables only.

Specifically, the Rank method works as follows:

Algorithm 1. Rank method

1. Estimate the random intercept model (on the estimation sample).

2. Compute (on the simulation sample) the predicted outcome ŷ∗0 = x0β̂ by impos-

ing α̃j = 0 ∀j.

3. Compute the difference between the observed outcome and the predicted outcome

based on observables only, y0 − ŷ0, and order this difference from high to low

(with randomized tie-breaking).

4. Extract N values from the (parametric or empirical) unconditional distribution

of the individual intercept, α̃.

5. Extract N values from the (parametric or empirical) unconditional distribution

of the idiosyncratic disturbance, ũ0.

6. Construct the error terms ẽ0 = α̃+ ũ0 and order them from high to low.

7. Assign the random intercepts α̃ to the individuals by matching the two rankings

described above.

Given that the Rank method only requires to match two rankings, it works in N logN

(quasilinear) time, as the simple Montecarlo experiment reported in figure 3 shows.

7.1 An example

Here I provide a numerical example of the Rank method. Suppose that a random effects

estimation of eq. (2) gives a vector of estimated coefficients β̂ and an estimate σ̂A for
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Figure 3: Speed of execution as a function of sample size, Rank method. Parameterization: x ∼
N(0, 1), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1). The N logN fit is superimposed (red line).

the standard deviation of the random effects. An estimate of the standard deviation of

the error term σ̂U is also obtained. I assume that β̂ are estimated without errors (β̂ =

β). Random intercepts α̃ have to be assigned to individuals in the simulation sample.

Columns (1)-(3) in table 1 reconstruct the outcome. Column (4) ranks the difference

between outcome and predicted outcome, assuming no individual effects (because of the

assumption that β is estimated without errors, this difference is equal to e0). All these

values refer to the observed data. The last four columns refer to imputation. Column (5)

reports the value of the imputed individual effects α̃, drawn from a normal distribution

with mean 0 and standard deviation σ̂A. Column (6) contains random draws ũ0 from a

normal distribution with mean 0 and standard deviation σ̂U . Columns (5) and (6) add

to the total residuals ẽ0, which are displayed in column (7) and ranked in column (8).

The Rank method assigns high draws of the total residuals, which on average are

associated to high draws of the random intercepts, to individuals with a high value of the

outcome variable and a low value of the score, and vice versa. For instance, the observable

characteristics of individual 6 point to a low value of the outcome. The fact that this

is not true suggests that she has some positive unobservable characteristics; accordingly,

individual 6 is assigned a high draw of the total residual ẽ0. The stochastic nature of the

algorithm allows such a draw to be associated to a low value of the imputed individual
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Table 1: Application of the Rank method in a linear regression model.

(1) (2) (3) (4) (5) (6) (7) (8)

id x0β e0 y∗0 r(y∗0 − x0β̂) α̃ ũ0 ẽ0 r(ẽ0)
6 -0.77 2.62 1.85 1 -1.43 2.01 0.58 1
7 -0.49 2.24 1.75 2 2.36 -2.12 0.24 2
5 -1.38 1.77 0.39 3 0.22 -0.10 0.12 3
8 -0.39 1.70 1.32 4 2.02 -2.45 -0.43 4

10 0.21 0.83 1.05 5 -0.76 0.16 -0.60 5
9 -0.05 0.32 0.28 6 -1.35 0.27 -1.08 6
3 -0.37 -0.47 -0.84 7 0.29 -1.45 -1.16 7
1 -2.79 -0.51 -3.30 8 -1.87 0.06 -1.81 8
2 -0.50 -0.64 -1.14 9 -0.52 -1.85 -2.37 9
4 0.36 -0.90 -0.54 10 0.79 -3.33 -2.54 10

Note: It is assumed β̂ = β.

effect α̃, although this happens with a low probability.

Table 2 describes the application of the Rank method to the binary case of eq. (3): a

binary outcome y is now observed (column (3) in table 2), in lieu of y∗, following eq. (3).

Column (4) displays the value of the predicted outcome, based on the observables only:

ŷ0 = 1
(
x′j,0β̂ > 0

)
; column (5) contains the difference between observed and predicted

outcome; column (6) shows the ranking of this difference, assuming random tie-breaking

rule. Columns (7)-(10) are the same as in the right hand side of table 1. Finally, column

(11) reports the value of the predicted outcome, once the imputed random intercept is

taken into consideration: ỹ0 = 1
(
x′j,0β̂ + ẽj,0 > 0

)
.

Table 2: Application of the Rank method in a binary response model.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
id x0β e0 y0 ŷ0 y0 − ŷ0 r(y0 − ŷ0) α̃ ũ0 ẽ0 r(ẽ0) ỹ0
7 -0.49 2.24 1 0 1 1 -1.43 2.01 0.58 1 1
9 -0.05 0.32 1 0 1 2 2.36 -2.12 0.24 2 1
8 -0.39 1.70 1 0 1 3 0.22 -0.10 0.12 3 0
5 -1.38 1.77 1 0 1 4 2.02 -2.45 -0.43 4 0
6 -0.77 2.62 1 0 1 5 -0.76 0.16 -0.60 5 0

10 0.21 0.83 1 1 0 6 -1.35 0.27 -1.08 6 0
1 -2.79 -0.51 0 0 0 7 0.29 -1.45 -1.16 7 0
2 -0.50 -0.64 0 0 0 8 -1.87 0.06 -1.81 8 0
3 -0.37 -0.47 0 0 0 9 -0.52 -1.85 -2.37 9 0
4 0.36 -0.90 0 1 -1 10 0.79 -3.33 -2.54 10 0

Note: It is assumed β̂ = β.

The same logic as in the linear regression case applies, but now the nonlinearity of
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the model hides much information. The MSFE is in this case simply the fraction of

observations for which the predicted outcome ỹ0 = 1
(
x′j,0β̂ + ẽj,0 > 0

)
does not match

the actual outcome y0 = 1(x′j,0β+ej,0 > 0). In this example, it amounts to 4 (individuals

5, 6, 8 and 10 ).

7.2 Properties of the Rank method, linear case

The following two conditions are sufficient for optimality of the Rank method, in the

linear case: (i) minimizing the mean squared error MSE(ê0) =
∑

j(ej,0 − ẽj,0)2 leads to

optimal forecasts (for a given extraction of ẽ0), (ii) matching the two rankings of ê0 and

ẽ0 minimizes MSE(ê0) (for the given extraction of ẽ0). I now establish that they both

hold, as sample size increases.

Proof of condition (i) is trivial. From ỹ∗j,0 = x′j,0β̂ + ẽj,0 we immediately get

y∗j,0 − ỹ∗j,0 = x′j,0(β − β̂) + êj,0 − ẽj,0. (21)

Hence, if β̂ is consistent, minimizing MSE(ê0) is equivalent to minimizing MSFE(y0).

The following proposition states that the Rank method does indeed solve the optimal

assignment problem in linear regression models:

Proposition 4. Given the model (2), the Rank solution obtained by applying algorithm

1 minimizes MSE(ê0) =
∑

j(êj,0 − ẽj,0)2/N .

Proof. See appendix B.

8 Properties of the Rank method applied to the bi-

nary response case

In the binary response case, the Rank method is not optimal. To see why, consider

switching the imputed random intercepts for individuals 8 and 10 : while individual 8,

who is observed as a success, remains predicted as a failure, individual 10 (who is also
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a success) is now assigned a positive value of UH, and therefore turns concordant. Said

differently, assigning a positive but small value of the random intercept to 8 is a waste,

as it does not make the score of 8 positive.19 However, it turns out that applying the

Rank method to a binary setting, while leading to a decrease in the ability to replicate

the observed data with respect to the optimal assignment solution, obtains in exchange

a drastic reduction in the artificial correlation that is introduced between the imputed

individual effects and the explanatory variables. Indeed, given that other simple methods

of imputing the individual effects are available in the linear case, the biggest value added

of the Rank method lies in its application to the nonlinear case.

The left panel of figure 4 refers to the Rank method in the linear regression model, and

shows that no correlation is found which was not present in the data generating process.

The right panel shows the performance of the Rank method in the binary response model.

The values of the parameters are the same as in the Montecarlo experiment of figure 2.

(a) (b)

Figure 4: Correlation coefficient between the imputed random intercept Ã and the explanatory variable
x, Rank method. Parameterization: x ∼ N(0, σx), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1). For each value
of σX 100 individuals are simulated and the Rank method is applied. Left panel (a): continuous response
model. Right panel (b): binary response model.

Only when the explanatory variables are relatively unimportant in determining the

19In appendix C I develop a variation of the Rank method that solves the optimal assignment problem
in the binary response case in quadratic rather than cubic time, as the standard Hungarian method. The
algorithm also clarifies the mechanics behind the induced correlation problem.
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outcome the correlation is significant. Its sign depends on the local curvature of the

logit/probit transformation around the mean value x̄β̂, as individuals are ranked accord-

ing to y − ŷ = 1(xβ + e > 0) − 1(xβ̂ > 0). As the variance of x becomes bigger, the

induced correlation becomes very small and then vanishes. This corresponds to the fact

that, due to the discrete nature of the outcome, with very large or very low values of

the score UH makes little difference. Therefore, y and ŷ tend to be concordant, and the

random intercepts are assigned randomly.

Figure 5 shows the performance of the Rank method in a binary response setting (left

panel), and compares it with a pure random assignment (right panel). As UH looses

importance (σX increases with respect to σA), the Rank method converges to a random

assignment. However, the Rank method still roughly halves the MSFE, with respect to

random assignment (as a further benchmark, consider that the Conditional Rank method,

which solves the optimal assignment problem in binary response models, drives the MSFE

basically to zero).

(a) (b)

Figure 5: Mean squared forecasting error MSFE(y0) =
∑N
j=1(yj,0 − ỹj,0), binary response model. Pa-

rameterization: x ∼ N(0, σx), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1). For each value of σX 100 individuals
are simulated. Left panel (a): Rank method. Right panel (b): random assignment.

Even when the random disturbances play a little role in determining the outcome, for

high values of σ2
x, the MSFE with the Rank method is still about half the size than with
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Figure 6: Distribution of the true and imputed (via the Rank method) individual effects. Parameteriza-

tion: x ∼ N(−0.5, 2), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1)

unconditional assignment (for comparison, the optimal assignment solution brings the

MSFE down to practically zero irrespective of σ2
x). Finally, the Rank method is also able

to replicate to a satisfactory extent the conditional distribution properties of the true

individual effects. Figure ?? shows the distributions of the true and imputed individual

effects for the y = 0 and y = 1 subsamples, in an additional Monte Carlo experiment

where 1 million observations were drawn according to x ∼ N(−0.5, 2), β = β̂ = 1, A ∼

N(0, 1), U ∼ N(0, 1).

For extreme values of x, the Rank method introduces some distortions in the distri-

bution of the individual effects, but still much lower than random assignment (that is,

sampling from the unconditional distribution of the individual effects). This can be seen

in figure 7, for the first quintile of x.

9 Summary and conclusions

In this paper I have dealt with the problem of forecasting the evolution of a population

where the estimated processes account for unobserved heterogeneity. If the simulation

sample does not coincide with the estimation sample and the initial conditions of the

simulation include information on outcomes, the problem is non-trivial. This situation

is indeed quite common, for instance in dynamic microsimulation modeling, and involves
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Figure 7: Distribution of the true and imputed (via the Rank method) individual effects, first quintile

of x. Parameterization: x ∼ N(−0.5, 2), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1).

assigning individual effects to the simulated population by sampling from the conditional

estimated distributions of the individual effects (conditional on the observed outcomes),

rather than from the unconditional distributions. This is straightforward in linear models

but involves the use of MCMC methods in nonlinear models.

The solution I have proposed in this paper is to draw from the unconditional dis-

tribution of the overall error term, composed by an individual intercept plus a random

component, and then assign the individual-specific component of this overall error term

to the agents in the simulation. I have presented an algorithm which is computationally

very efficient and solves the optimal assignment problem in linear settings; applied to

nonlinear models, it offers a good approximation of the distributional properties of the

individual effects. The intuition behind the algorithm is using the difference between ob-

served and predicted outcome as a proxy of the unobserved individual component, which

is then matched with the sampled residuals. The algorithm can be thought of as variants

of propensity score matching, where individuals in the simulation sample are matched

not with individuals in the estimation sample, but with simulated counterparts sampled

from estimated unconditional distributions.

For nonlinear applications where the approximation offered by the Rank method is not

enough, and the use of MCMC methods like Gibbs sampling too costly, the use of a linear

probability model should be considered. The common solution of neglecting unobserved
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heterogeneity in forecasting is shown to badly affect the quality of the forecasts, especially

in nonlinear models.
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A Neglecting UH in binary response models

In binary response models, the outcome collapses on the two distinct values 0 and 1.

Ex post, the best option is to forget UH when the random draw for the imputed UH is

negative while the realized outcome is 1 (as the negative draw decreases the probability

of simulating a success, hence increasing the MSFE), and when the random draw for UH

is positive, while the realized outcome is 0 (as the positive draw decreases the probability

of simulating a failure, hence increasing again the MSFE). An ex ante decision rule would

then require the evaluation of the probability of obtaining a success/failure for all different

values of x, A and Ã. The multiple integration required however proves impossible to

deal with analytically.

Let’s assume, as a first approximation, β̂ = β.20 The expected forecasting error, for

given αj, α̃j and xj,s, is

ESEj,s =EU
[
yj,s − ỹj,s

]
= Pr

[
yj,s = 1 ∧ ỹj,s = 0

]
+ Pr

[
yj,s = 0 ∧ ỹj,s = 1

]
= Pr

[
yj,s = 1

]
Pr
[
ỹj,s = 0|yj,s = 1

]
+ Pr

[
yj,s = 0

]
Pr
[
ỹj,s = 1|yj,s = 0

]
=FU

(
x′j,sβ + αj

)
Pr
[
x′j,sβ + α̃j + ũj,s < 0|x′j,sβ + αj + uj,s ≥ 0

]
(22)

+
[
1− FU

(
x′j,sβ + αj

)]
Pr
[
x′j,sβ + α̃j + ũj,s ≥ 0|x′j,sβ + αj + uj,s < 0

]
=FU

(
x′j,sβ + αj

)
FU−Ũ

(
αj − α̃j + zj,s(x)

)
+
[
1− FU

(
x′j,sβ + αj

)][
1− FU−Ũ

(
αj − α̃j + zj,s(x)

)]
=1− FU

(
x′j,sβ + αj

)
− FU−Ũ

(
αj − α̃j + zj,s(x)

)
+ 2FU

(
x′j,sβ + αj

)
FU−Ũ

(
αj − α̃j + zj,s(x)

)
with x′j,sβ + αj + uj,s + zj,s(x) = 0.

The condition when disregarding α̃ leads to a better forecast is

FU−Ũ
(
αj−α̃j+zj,s

)
−FU−Ũ

(
αj+zj,s

)
< 2FU

(
x′j,sβ+αj

)[
FU−Ũ

(
αj−α̃j+zj,s

)
−FU−Ũ

(
αj+zj,s

)]
(23)

20This is wrong even in expected terms, as the probit/logit coefficients (and, in general, non-linear
estimators) are not unbiased.
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which gives 
Pr
[
yj,s > .5

]
if α̃j < 0

Pr
[
yj,s < .5

]
if α̃j > 0

. (24)

This translates, after integration over x, A, Ã, on a condition on the covariance be-

tween A and Ã, which is however much more complicated than in linear models (see

Proposition 1).

B Proof of Proposition

Given the model (2), the Rank solution obtained by applying algorithm 1 minimizes

MSE(ê0) =
∑

j(êj,0 − ẽj,0)2/N .

The proof is organized in two parts. First, I show that the Rank solution is optimal

for N = 2. Second, I show that when N > 2 a non-Rank solution can be improved upon

by another non-Rank solution where non-Rank connections involving any 2 couples (ê, ẽ)

are replaced using the N = 2 result. This process can be repeated until the Rank solution

is obtained.

For simplicity I drop the time index 0, which specifies that the estimated residuals

ê depend on the idiosyncratic term u0 and that the simulated residuals ẽ depend on

the random extraction ũ0. Denote as ∆j = êj − ẽj the argument of the individual

contribution to the objective function. Also, let S =
∑N

j=1 |∆j|. In what follows numerical

indexes for ê and ẽ stand for their rank, and not to the individuals they refer to. Hence,

ê1 ≤ ê2 ≤ · · · ≤ êN and ẽ1 ≤ ẽ2 ≤ · · · ≤ ẽN . The position in the ranking is generically

identified with the letter k. As an example, ẽj = ẽk means that individual j is assigned

the kth biggest (or smallest, for what matters) value for her random intercept, among

those extracted.

Lemma 1. The Rank solution minimizes MSE(ê0) when N = 2.

Proof. For ease of visualization, I draw the êk and the ẽk on two parallel axes. In an

N = 2 case, the four points {ê1, ê2, ẽ1, ẽ2} define a quadrilateral: the Rank solution
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involves connecting the edges, while the (unique) non-Rank solution involves connecting

the diagonals. Define a and d the two edges (connecting respectively ê1 to ẽ1 and ê2 to

ẽ2), while b and c the two diagonals (connecting ê1 to ẽ2 and ê2 to ẽ1).

According to the ordering of the vertex, there are 6 possible cases (figure 8). Symmetry

of cases (iii)-(iv) and (v)-(vi) allows us to focus on cases (i), (ii), (iii) and (v) only.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 8: N = 2, different orderings of {ê1, ê2, ẽ1, ẽ2}.

Case (i): ẽ1 ≤ ê1 ≤ ê2 ≤ ẽ2. It is immediate to see that the diagonals are longer than

the edges: a ≤ c, d ≤ b. Hence, MSE(ê) is minimized with the Rank solution.

Case (ii): ê1 ≤ ẽ1 ≤ ẽ2 ≤ ê2. Again, the diagonals are longer than the edges:

a ≤ b, d ≤ c.

Case (iii): ẽ1 ≤ ẽ2 ≤ ê1 ≤ ê2. In this case, SR = SNR. In facts, SR = ê1− ẽ1 + ê2− ẽ2,

while SNR = ê1 − ẽ2 + ê2 − ẽ1.21 Now, concavity of the objective function implies that,

for any given S, MSE(ê) is minimized when heterogeneity in ∆ is kept at a minimum.22

Simple arithmetic shows that, for fixed S, var(∆)R ≤ var(∆)NR implies (ê2−ê1)(ẽ2−ẽ1) ≥

0, which is true by construction. Therefore, the variance of ∆ in the Rank solution is

never greater than in the non-Rank solution, and the Rank solution is again optimal.

Case (v): ẽ1 ≤ ê1 ≤ ẽ2 ≤ ê2. Keep fixed ẽ1, ê1 and ê2. The best case for the non-Rank

solution, and the worse for the Rank solution, is ẽ2 = ê1 (in which case b = 0 and d, given

21More in general, it is possible to show that the necessary conditions for SR = SNR are:

êk ≥ ẽk+1 ∀k ∈ {0, N − 1} or

êk+1 ≤ ẽk ∀k ∈ {0, N − 1}

.
22This stems immediately from the definition of a concave function: f(sm + (1 − s)M) ≥ sf(m) +

(1− s)f(M).
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the constraints, is maximum). This is a borderline case (iii) situation, and the result for

case (iii) applies. A fortiori, the non-Rank solution cannot be optimal when ẽ2 > ê1.

Similar arguments can be made for case (iv) —symmetric to case (iii)— and case (vi)

—symmetric to case (v). Hence, the Rank solution is optimal when N = 2.

Lemma 2. Subsequent replacements of diagonals with edges when N > 2 improve the

MSE and ultimately lead to the Rank solution.

Proof. Take any two connections in a non-Rank solution in the N > 2 case, say those for

individuals i and j, for which êi < êj and ẽi > ẽj. Then, the result of lemma 1 applies and

the non-Rank solution can be improved by connecting the smallest ê with the smallest ẽ,

and the largest ê with the largest ẽ, that is rewiring according to the partial ranks. Now,

only two cases are possible: either the new connections do not cross any other connection,

that is @h such that êh ≶ êi, ẽh ≷ ẽi or êh ≶ êj, ẽh ≷ ẽj, in which case we have obtained

the Rank solution, or such an h exists, and the process of replacement of diagonals with

edges can start again.

Figure 9 shows an example.

Figure 9: Subsequent replacement of diagonals with edges.
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Together, the two lemmas above imply optimality of the Rank solution.

C The Conditional Rank method

To solve the optimal assignment problem in binary response settings, the Rank method

has to undergo two (minor) modifications. First, to avoid throwing away information

which is levelled off by the discrete nature of the outcome variable, in binary response

models it is better to use −x0β̂ —the difference between the threshold in the latent

variable that determines outcome (which is normalized to 0) and the predicted value of

the score— as a proxy of the true errors, rather than y − ŷ. Second, in order not to

“waste” random terms that could be helpful in matching other observations by assigning

them to individuals for which they don’t make a difference, however, an additional control

needs to be made, separately on successes (yj,0 = 1) and failures (yj,0 = 0).

Following closely this constructive approach, an algorithm for solving the optimal

assignment problem in binary response models can be defined:

Algorithm 2. Conditional Rank method for binary response models

1. Estimate the random intercept model (on the estimation sample).

2. Compute the score x0β̂, by imposing α̃j = 0 ∀j (on the simulation sample), and

rank the score from high to low.

3. Extract N values from the (parametric or empirical) unconditional distribution

of the individual intercept, α̃.

4. Extract N values from the (parametric or empirical) unconditional distribution

of the idiosyncratic disturbance, ũ0.

5. Construct the error terms ẽ0 = α̃+ ũ0 and order them from high to low.

6. Go down the ranking of the score (from high to low) and assign to each individual

with y0 = 0 the lowest unassigned value ẽ such that ẽ < x′j,0β̂.

7. Go up the ranking of the score (from low to high) and assign to each individual

with y0 = 1 the highest unassigned value ẽ such that ẽ ≥ x′j,0β̂.
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8. Go down the ranking of the score again (from high to low) and assign to each

unmatched individual with y0 = 0 the lowest unassigned value ẽ.

9. Go up the ranking of the score again (from low to high) and assign to each

unmatched individual with y0 = 1 the highest unassigned value ẽ.

Steps 6-7 assign the random terms in such a way to maximize the number of concor-

dant outcomes (observed and predicted): for those individuals with y0 = 0, higher values

of the score (which would by themselves increase the likelihood of a success) are matched

with lower residuals; however, residuals that are not small enough to bring the value of

the predicted latent variable below 0 are not “wasted” and are kept for observations with

a lower value of the score. Analogously, for those individuals with y0 = 1, lower values

of the score (which would by themselves increase the likelihood of a failure) are matched

with higher residuals; however, residuals that are not big enough to bring the value of

the predicted latent variable above 0 are not “wasted” and are kept for observations with

a higher value of the score. After this first round of assignments, there could be some

observations and residuals still unmatched: these are the individuals for whom no matter

the value of the residual left unassigned —given the extracted vector ẽ0— the predicted

outcome is different from the observed one. Therefore, the loop is repeated, without

controlling for the threshold condition (steps 8-9).

C.1 Properties of the Conditional Rank method, binary case

In the binary response case, optimality of the Conditional Rank method in terms of

minimization of MSFE(y0) holds almost by construction.23

Proposition 5. Given the model (3), the solution obtained by applying algorithm 2 min-

imizes MSFE(y0) =
∑

j(yj,0 − ỹj,0)2/N .

23Note however that in the binary response case there might be more than one solution to the optimal
assignment problem (for instance, the algorithm can in principle produce two different results depending
on whether y = 0 or y = 1 observations are processed first; also, arbitrarily swapping matches created
in the second round of assignment —concerning discordant individuals— leaves the forecasting error
unaffected).
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Proof. In order to improve on the MSFE, positive residuals are useful only to bring

negative predicted scores in the positive camp, for individuals with y0 = 1. Conversely,

negative residuals are useful only to bring positive predicted scores in the negative camp,

for individuals with y0 = 0. There is no value in keeping a big residual for an individual

with y0 = 0, or a small residual for an individual with y0 = 1. At the same time, there

is no value in assigning a big residual to a small predicted score, given y0 = 1, if the

sum does not turn positive, nor assigning a small residual to a big predicted score, given

y0 = 0, if the sum does not turn negative.

The Conditional Rank method closely follows these principles. Denote as a ‘good’

match the case when a residual is assigned to an individual such that the predicted

and the observed outcome for that individual are concordant. In the first round of the

imputation process, the highest possible number of good matches are created for y0 = 0

individuals. Conditional on this, the highest possible number of good matches are then

created for y0 = 1 individuals. We have therefore to show that it is not possible to create

a good match for an individual who is left unassigned after the first round, without

destroying at least another good match.

Consider a y0 = 0 individual who is left unassigned after the first round: this means

that there are no residuals small enough for him, without destroying some other good

match involving a y0 = 0 individual with a higher score. To re-establish such a good

match we would need to destroy another good match involving a y0 = 0 individual with

an even higher score. At some point, no such good matches will be available: finding a

good match for the first unassigned individual leads to no improvement in the forecasting

error.24

Consider now a y0 = 1 individual who is left unassigned after the first round: this

means that there are no residuals big enough for him, without destroying some other

good match. Such a good match involves either a y0 = 1 or a y0 = 0 individual. In

the first case, an argument symmetric to the one above can be made, and there is no

24The only effect is to replace a concordant individual which is further away from the tipping point
with a concordant individual which is closest to the threshold —a case when a forecasting error is
arguably more acceptable.
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improvement in the forecasting error. In the latter case, exactly the same argument above

can be invoked, and again there is no improvement in the forecasting error.

C.2 Example

Application of the Conditional Rank method to the example of tables 1 and 2

(1) (2) (3) (4) (5) (6) (7)

id x0β e0 y0 r(x0β̂) ẽ0 r(ẽ0) ỹ0

1 -2.79 -0.51 0 10 -1.16 7 0
2 -0.50 -0.64 0 7 -1.81 8 0
3 -0.37 -0.47 0 4 -2.37 9 0
4 0.36 -0.90 0 1 -2.54 10 0
5 -1.38 1.77 1 9 -0.43 4 0
6 -0.77 2.62 1 8 -0.60 5 0
7 -0.49 2.24 1 6 0.58 1 1
8 -0.39 1.70 1 5 -1.08 6 0
9 -0.05 0.32 1 3 0.24 2 1
10 0.21 0.83 1 2 0.12 3 1

Note: It is assumed that β̂ = β

Table 3: Optimal assignment, binary response case.

The first part of the table contains the projections when y = 0: all failures are

matched. Individual 4 has the highest value of the score, both in the y = 0 group and in

the whole sample. Given that her observed outcome is 0, she is matched with the lowest

residual, among those extracted, which turns out to be low enough to bring the value of

the predicted score below 0. Accordingly, the second highest score in the y = 0 group

(individual 3 ) is matched with the second lowest residual, the third highest (individual

2 ) score with the third lowest residual, and so on. All these residuals are small enough

to keep their matched individuals in the ỹ = 0 camp.

The second part of table refers to the case y = 1: the goal is now taking the highest

number of predicted score above 0. Note that the lowest observed score in this group

(individual 5 ) is matched only with the fourth highest residual. This is because there

are no residuals whatsoever that are big enough to compensate for the low value of the

observables, for this individual. The big residuals are therefore saved and assigned to

those individuals for which they make a difference: the highest residual (.58) is assigned
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to individual 7, who has a value of the score of -.49; the second highest residual (.24)

is assigned to individual 9, who has a value of the score of -.05; while the third highest

residual (.12) is assigned to individual 10, with a value of the score that is already above

0.

While the first round of imputation (steps 6. and 7. in the algorithm) selects the

concordant units (for which the predicted outcome is equal to the observed outcome),

the second round (steps 8. and 9.) deals with the discordant ones. Such discordant units

(individuals 5, 6 and 8 ) are assigned a residual such that those with a lower score get

again a higher residual: this is consistent with the fact that we observe a success for these

individuals (and indeed, should they have an observed outcome y = 0, the reverse would

be true).

Note that the above example is purportedly built in order to show the possibility to

have discordant units. In practice however, this is a rare case, and the forecasting error

MSFE(y0) =
∑

j(yj,0 − ỹj,0)2/N is generally very small. In 100 Montecarlo experiments

with x ∼ N(0, 1), β = 1, A ∼ N(0, 1), U ∼ N(0, 1) —supposing again that β is per-

fectly estimated— and a population of 100 individuals, the fraction of discordant units

(unassigned residuals after the first round of imputation) is on average equal to 0.01%.

Lowering the relevance of UH, for instance by having the explanatory variable extending

over a wider range or centering its distribution further away from the tipping threshold

for determining the outcome, has little effects: with x ∼ N(0, 5) the fraction of discordant

units is 0.03%; with x ∼ N(−.5, 1) the fraction of discordant units is zero.

The Conditional Rank method is equivalent to the Hungarian method developed in

Linear Programming, meaning that they find exactly the same solutions. However, it

is faster: while the Hungarian method works, in the best operationalizations, in cubic

time, the algorithm described here works in quadratic time. This is shown in figure 10,

which plots the CPU usage of the Conditional Rank method for increasing values of the

population size N , and x ∼ N(0, 1), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1).
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Figure 10: Speed of execution as a function of sample size, optimal assignment, binary response model.
A quadratic fit is superimposed. Parameterization: x ∼ N(0, 1), β = β̂ = 1, A ∼ N(0, 1), U ∼ N(0, 1).
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