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Abstract 
 
Multiplicative models of firm dynamics ‘à la Gibrat’ have become a standard reference in 
industrial organization. However, some unpleasant properties of their implied dynamics – 
namely, their explosive or implosive behaviour (firm size and number collapsing to zero or 
increasing indefinitely) -   have been given only very little attention. In this paper I investigate 
which modifications to the standard multiplicative model of firm dynamics lead to stable (and 
reasonable) distributions of firm size. 
An agent-based simulation study is performed, and a methodology is proposed to recover the 
(aggregate) laws governing the system by estimating the reduced form, i.e. the local data 
generating process, on the artificial data resulting from a number of artificial experiments. 
I show that in order to obtain stable systems for a wide range of average growth rate, either 
heteroskedasticity in the growth rates has to be assumed, or entry and exit mechanisms 
included. While other particular, ad hoc, entry and exit mechanisms could be imagined, I show 
that combining the broad class of threshold entry mechanisms and the more restricted class of 
threshold exit mechanisms with overcapacity penalizing all firms (where entry and exit are 
determined with reference to an exogenously defined total capacity of the market), lead to 
stable distributions even in the case of growth rate homoskedasticity, given a non-zero 
minimum threshold for firm size. 
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Introduction 
 
Multiplicative models of firm dynamics ‘à la Gibrat’ have become a standard starting point in 
the industrial organization and economic geography literature. However, some unpleasant 
properties of their implied dynamics – namely, their explosive or implosive behaviour (firm size 
and number collapsing to zero or increasing indefinitely)  -   have been given only very little 
attention. Overall, these models may be well suited to study particular urban population 
dynamics in non-mature economies, where ‘explosive’ dynamics may also be welcome, but 
they seem to offer very little to the study of firm growth.  
 
It is thus surprising that such a big strand in the literature of applied industrial economics is 
devoted to trying to confirm or reject Gibrat assumptions of mean and variance 
homoskedasticity in the rate of firm growth1. Most papers don’t pay attention at all to the fact 
that the growth rates they found in the data are incompatible with any definition of equilibrium 
in the industry, given the multiplicative model they assume. Here, two issues are at stake. 
First, we may actually face an out-of-equilibrium situation, but then it seems to make little 
sense to characterize the industry at that stage. Second, changes in the theoretical model 
could be more appropriate, but this could in turn imply the need to focus also on other things 
than the growth rate of existing firms. Entry and exit dynamics are first candidate, as it will be 
shown below. 
 
Multiplicative models have nourished because they lead very easily to nice aggregate 
distributions of firm size. However, the focus of the literature on the exact shape of the 
resulting firm size distribution is surprising, compared with the little attention its anchorage 
has received. We should not pay too much attention to a model that predicts a Power Law 
distribution of firm size, as long as this distribution degenerates rapidly to zero, or to infinity. 
 
In this paper, I want both less and more. I look at ‘reasonable’ distributions of firm size, where 
I define a Reasonable distribution (R-distribution) as: 

• a left skewed and truncated distribution 
• with fat right tail, in order to span empirically over some orders of magnitude 
• with finite stationary mean and variance,   
• of a finite stationary number of firms. 

 
In the next sections, I will look at which conditions a multiplicative model of firm growth must 
satisfy in order to show an R-distribution of firm size. In particular, I will consider different 
entry and exit mechanisms. The paper is structured as follows. The first section is devoted to a 
brief survey of the use of multiplicative models in the literature. Section 2 describes a general 
multiplicative model with entry and exit mechanisms embedding most models described in 
section 1 as particular cases. The case for a simulation study is put forward in section 3. After 
discussing the strength and weaknesses of this approach, a methodology for overcoming some 
of its traditional limits is proposed. Section 4 deals with the simulation set-up, while in the 
following section I deal with the issue of recognizing the long-term equilibrium of each 
simulation run. Section 6 contains the results, both for models without (6.1) and for models 
with (6.2) entry and exit dynamics. Section 7 offers my conclusions. 
 

                                          
1 First empirical tests date back to the work of Hart and Prais (1956), Hart (1962), Mansfield (1962), 
Hymer and Pashigian (1962) and Samuels (1965). Other related work can be found in Singh and 
Whittington (1975), Chesher (1979), Kumar (1985), Leonard (1986), Evans (1987 a, b), Hall (1987), 
Boeri (1989), Contini and Revelli (1989), FitzRoy and Kraft (1991), Variyam and Kraybill (1992), Wagner 
(1992), Amirkhalkhali and Mukhopadhyay (1993), Bianco and Sestito (1993), Dunne and Hughes (1994), 
Tschoegl (1996), Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger, Stanley and Stanley (1997), 
Harhoff, Stahl and Woywode (1998), Hardwick and Adams (1999), Hart and Oulton (1999), Fariñas and 
Moreno (2000), Geroski, Lazarova, Urga and Walters (2000), Machado and Mata (2000), Acs and 
Armington (2001), Vander Vennet (2001), Audretsch, Klomp, Santarelli and Thurik (2002), Delmar, 
Davidsson and Gartner (2002), Goddard, Wilson and Blandon (2002). For a survey of the main results 
see Audretsch, Klomp, Santarelli and Thurik (2002). Stylized facts are worked out in Caves (1998). 
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1. The literature 
 
It is a well known fact that firm size distribution – as well as many other aggregate 
phenomena like city size, web graph and file size, word frequency, average weight of different 
species… - exhibits common features across time and space. In particular, it is recognized to 
be highly skewed to the left, and to span over several order of magnitude, i.e. to show ‘fat’ 
tails. Moreover, many studies have found that this distribution can be very well approximated 
by a Power Law, given by the probability distribution function: 
 

[1]    P[X = x] ~ x-(k+1) = x-a 
 
 
 
The first appearance of this - now very fashionable - distribution dates back to Pareto in the 
late XIX century. He showed that income distribution follows what since then has been called a 
Pareto distribution, with a cumulative distribution function given by: 
 

[2]     P[X > x] ~ x-k 
 
More than 30 years later, George Kingsley Zipf, a Harvard linguistics professor, sought to 
determine the 'size' (or frequency of use in English text) y of the ith most common word. He 
found that this frequency is inversely proportional to it's rank r. This regularity has of course 
been baptized after him and with the name of Zipf’s Law 
 

[3]    yi ~ ri
-b

, with b close to unity 
 
has found many applications, in particular to the study of city size distribution, where it is 
known to be surprisingly robust and stable. 
 
Even if a long time had to pass before the connection was recognized, Zipf, Pareto and Power 
Law distributions are actually the same thing, Pareto being the c.d.f. of a Power Law and Zipf 
its expression in terms of rank, in the particular case of a Pareto coefficient equal to 1 
(Adamic, 2000). 
 
Once these regularities were noted, the challenge became finding simple statistical models to 
explain them2. Here, the benchmark is still Gibrat’s 1930 Law of Proportionate Effect, stating 
that if growth rates of firms in a fixed population (i.e. abstracting from entry and exit 
dynamics) are independent of size and uncorrelated, the resulting distribution is lognormal. He 
thus introduced the first multiplicative model of firm dynamics 
 
[4] 

 
 
Taking logs, this model reduces to  
 
[5] 

 
 
The model is sometimes expressed in terms of instantaneous growth rate, St+1 = St exp(λt) , but 
it leads to the same conclusions. If the growth rates are independently distributed, by the law 
of great numbers each firm’s logarithm of size at any time sufficiently far from the start is a 

                                          
2 see Sutton (1997) for a survey on the developments of these models 

ttt SS λ=+1

∑=+ ttS λlnln 1
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random extraction from a normal distribution. Thus, in this very simple model with no 
interaction between firms, firm size follows a lognormal distribution. Moreover, concentration 
in the industry will keep on increasing indefinitely, the more the higher the variance of the 
growth rate distribution.  
 
Many variations of the Gibrat model have been developed in the literature, while remaining 
within a purely statistical description of firm dynamics. The main results of this strand of 
research was to show that even small variations from Gibrat Law lead to Power Law 
distributions. Indeed, Gibrat model itself lead to a Power Law distribution, although only in the 
limit and only if λ is predominantly > 1. 
 
Simon and Bonini (1958) introduced very simple entry dynamics, by assuming that: 

• only a fixed number of independent opportunities arise in the market at each time,  
• the probability of an existing firm taking up each opportunity is proportional to its size 

(Gibrat Law) 
• the probability of a new firm taking up each opportunity is constant 

 
With this model of ‘preferential attachment’ they showed that firm size distribution follows a 
Power Law, although only in the upper tail. 
 
Kesten (1973) added to Gibrat model an additive term 
 
[6] 

 
 
showing that the model leads to a Power Law distribution  if λ predominantly > 1, while the 
distribution remains lognormal otherwise. 
 
Levy and Solomon (1996) showed that a Power Law can be obtained also by adding a 
reflection condition to Gibrat model, i.e. by assuming that firm size is bounded from below to a 
threshold proportional to average firm size: 
 
[7] 

 
 
In another paper (Levy and Solomon, 1996b), they generalize this strand of literature by 
showing that power Law distributions arise very naturally from stochastic multiplicative 
dynamics3. 
  
Then, Blank and Solomon (2000) incorporate both entry and exit dynamics by assuming that 
firms disappear if they fall below a certain threshold Smin (of magnitude 1), and that at each 
period   )**(SkN 1t tS−⋅=∆ + new firms enter the market , with size Smin (S* is the sum of all 

firms size, i.e. the total dimension of the industry). This model also leads to a Power Law 
distribution of firms size. 
 
Finally, an interesting and general link between multiplicative models and Markovian processes 
is found by Cordoba (2002). He refers to city growth, and shows that, if size follows a 
stationary Markov continuous diffusion process and total urban population keeps growing, in 
order to produce a Power Law distribution cities <<must exhibit (i) an expected growth rate 

                                          
3 (in particular, they showed that the appearance of the scaling power laws is as generic in multiplicative 
stochastic systems as the Boltzmann law is in additive stochastic systems). 
 

tttt SS ρλ +=+1
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that is independent of their size; and (ii) a growth variance that is proportional to size δ−1, 
where δ is the Pareto exponent found in the data>>. This means that Zipf’s Law (the case δ = 
1) must result from Gibrat Law, if the hypothesis about the diffusion process are correct. 
Cordoba’s result also allows for the emergence of new city, as far as the emergency rate is 
lower than the growth rate of existing cities. 
 
However, multiplicative models – and in particular most models proposed so far in the 
literature - have often very unpleasant properties, that more than compensate the nice 
distributions they produce. 
Let’s start with the father of all multiplicative models, i.e. ‘pure’ Gibrat. This model is either 
implosive or explosive, depending whether  
 
[8] 0))1(ln( =+ rE  
 
 
The intuition is the following: suppose size can only increase or decrease by 10% each period, 
with the same probability. Starting from a size of 1, suppose we face first a decrease and then 
an increase. In the first period size shrinks to .90, and bounces back only to .99 in the second 
period. Consider on the other side we face first an increase and then a decrease. Size moves to 
1.1 in the first period ad again to .99 in the second! This effect is of course stronger the bigger 
the variance, and can be contrasted only with a positive average growth rate. 
 
Solving equation [8] numerically, we find a very unstable equilibrium for which firm size 
remains on average constant, while departures from this equilibrium lead either to a 
degenerate distribution with zero mean and variance or to a degenerate distribution with 
infinite mean and variance.  
 
In the case the growth rate is normally distributed  
 
[9] 

),(~
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we obtain the following combination of mean and standard deviation (that can be 
approximated to any degree by a polynomial of order n) satisfying the constraint, and thus 
leading to a non-degenerate distribution:  
 
Figure 1: Stable equilibria in pure Gibrat model 
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Moreover, Gibrat model implies the concentration of the population (as  - for instance – 
described by the Gini coefficient) always increases. Clearly, this is not a very reasonable 
model. Simon and Bonini variation does not help much: in their model, the number of firms in 
the market keeps rising; thus, existing firms face on average negative returns, since business 
opportunities are fixed. This implies the model implodes, no matter which value of the 
variance. 
 
By adding a (stochastic) term ρ Kesten preserves the model from the risk of implosion, but not 
from the risk of explosion. Moreover, for combinations of the parameters that guarantee an 
implosion in Gibrat model, firm size distribution in Kesten model is nothing else than that of ρ.  
 
Levy and Solomon (1996 a) don’t even solve the problem of implosion, since their floor 
threshold is parametrized to the average of the distribution, and thus can only slow down the 
process. Moreover, the existence of such a mobile threshold is difficult to justify from an 
economic point of view. 
 
Blank and Solomon (2000) model faces the problem of implosion with the assumption that 
firms disappear if they fall below a minimum (constant) size. The model works fine only if the 
average growth rate is close to zero, i.e. in the implosion set. Implosion is avoided because the 
model provides an absolute anchorage to firm size, i.e. new firms size is independent of the 
existing firm size distribution. If the average growth rate is too high (where ‘too high’ means 
just slightly above 0) the number of firms keep rising indefinitely, and the convergence to a 
finite non-zero mean, equal to 1/k, is guaranteed only by more and more new firms of 
minimum size contrasting the explosion of the existing firms. Again, not a reasonable 
dynamics, even if characterized by a Power Law distribution of firm size. 
 
Cordoba’s paper is the more general we have treated so far. However, it does not solve our 
problem of finding multiplicative models with ‘stable’ distributions, since total population in his 
model keeps also growing indefinitely, by assumption. Moreover, the characteristics of a 
continuous diffusion process do not fit properly an industrial dynamics perspective, since it is 
well known that firms can face drastic change in size, especially downwards. I won’t 
investigate further relationships between other kind of Markovian processes and multiplicative 
models in this paper, although this could be of interest. 
 
My paper follows a radically different approach. It investigates which kind of modifications to 
the pure Gibrat model lead to stable long-run equilibria. It is closer in spirit and in methods to 
McCloughan (1995). McCloughan considers a modified Gibrat model, which takes into account 
some of the main violations of Gibrat’s Law (namely, the mean of the growth rate is allowed to 
be dependent on the size of the firm, and the growth rates are allowed to be serially 
correlated), together with a specific mechanism for entry and exit (entry is modelled as a 
learning game about the market opportunity between incumbents and potential entrants, 
which leads to a Poisson entry process; exit entails a distribution of critical sizes below which 
firms disappear). Calibration of the model yields thirteen empirical growth scenarios, six entry 
scenarios and three exit scenarios. The simulated data are then used to investigate the 
importance of growth, entry and exit in shaping concentration development. 
 
My paper also simulates the effects of violations of Gibrat’s Law, entry and exit on industry 
dynamics. However, it does not deal with real data. Rather, it is aimed at characterizing which 
processes lead to a distribution of firms size with some desired properties. A number of entry 
and exit mechanisms are considered, rather than just one. Which version of the general model 
better fits the data is left for future research. 
 
2. The model 
 
McCloughan discerns five types of violation of Gibrat’s Law: 

1) mean growth rate decreases with size of firm; 
2) mean growth rate increases with size of firm; 
3) growth variability decreases with size of firm; 
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4) growth variability decreases with age of firm; 
5) growth rates exhibit first-order positive autocorrelation. 

 
I’m concerned only with violations 1-3, i.e. with the issue of heteroskedasticity with respect to 
size. My starting point is a general multiplicative model, where growth rates are drawn from a 
Normal distribution, with mean and variance that are allowed to depend on the size of the firm 
(they can decrease to 0 with size at exponential speed, governed by two parameters, m and s; 
when m and s equal 0, mean and variance are homoskedastic). In order to reproduce the 
results of the literature, a minimum threshold is considered, so that firms cannot become 
smaller than a constant share s0 of the average size. In the simplest case, where s0 = 0, this 
guarantees no firm size becomes negative. Zero-dimension firms are cleaned up and exit the 
market, in order not to confound statistics. 
 
[10] 

 
 
Different entry and exits dynamics are considered, representing two broad classes of 
mechanisms: threshold mechanisms and non-threshold ones. 
 
Non-threshold mechanisms imply there is no reference to an exogenous threshold in 
determining entry and exit of firms, i.e. the model has no anchorage, except for the ‘natural’ 
floor at 0 for firms’ size. Among this class, I consider: 

• Proportional Number entry:  
 a constant share of total population of firms is added at each period 
 initial size is drawn from the lower half of the existing firms size distribution 

 
[11] 
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were D1/2, t is the lower half of the (empirical) firm size distribution at time t. 
 

• Proportional Number exit: 
 a constant share of total population of firms exits the market at each period 

 
• Proportional Dimension entry (the mechanism postulated by Blank & Solomon in 

their 2000 paper): 
 new firms are added in proportion of the increase in the total sector dimension 
 initial size is the exogenously determined minimum size allowed 
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• Minimum Size exit (the mechanism postulated by Blank & Solomon in their 2000 
paper): 

 firms below minimum size Smin exit the market 
 
Among threshold mechanisms, where entry and exit are determined with reference to an 
exogenously defined demand (i.e. to a maximum capacity of the market, that could change 
exogenously from period to period), I consider: 
• Excess Demand entry: 

 if total size of the market is less than the optimal dimension, (a part of) the gap is 
filled with new firms; 

 initial size is drawn from the lower half of the existing firms size distribution 
 
[13] 

 t1/2,,
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were S* is the optimal size of the market, i.e. the dimension that keep supply and 
(exogenous) demand in equilibrium, given (exogenous) prices, and D1/2, t is the lower 
half of the (empirical) firm size distribution at time t. 

 
• Excess Supply Affects All exit: 

 if total size of the market is less than the optimal dimension, first all firms are 
reduced proportionally. Then, firms smaller than a minimum size exit the market; 

• Excess Supply Affects Small exit: 
 if total size of the market is less than the optimal dimension, smaller ones exit the 

market; 
• Excess Supply Affects Large exit: 

 if total size of the market is less than the optimal dimension, larger ones exit the 
market; 

 
 
Table 1: Entry and exit mechanisms 
 
 ENTRY EXIT 

NON-THRESHOLD 
• Proportional Number 
• Proportional Dimension 

• Minimum Size 
• Proportional Number 

THRESHOLD • Excess Demand 
• Excess Supply Affects All 
• Excess Supply Affects Small 
• Excess Supply Affects Large 

 
 
 
Most of these mechanisms seem plausible, and altogether they characterize a fairly general 
class of entry and exit dynamics. Of course, the list could (and should) be extended, but it can 
work as an initial set of analysis. 
 
It must be noted that I have not specified how size is measured: it could be both an input 
variable (employment) or an output variable (turnover). Of course, in case size employment is 
used as the target variable, the additional hypothesis of constant returns to scale must be 
made in order to justify threshold mechanisms. 
 
 



 10

3. Methodology 
 
One reason why the literature has focused so far only on more restrictive models, with single 
entry and/or exit mechanisms, is that it becomes quite hard to deal analytically with more 
general models. Since my goal is studying more generally the interaction between 
multiplicative models and entry and exit mechanisms, I have to give something, and abandon 
the purity of analytical models. I will simulate my models. 
 
Simulation is often thought to be less general than analytical models. This is because analytical 
results are conditional on the specific hypothesis made about the model only, while simulation 
results are conditional both on the specific hypothesis of the model and the specific values of 
the parameters used in the simulation runs.  
 
This is partly reversed by the fact that simulation allows fairly less restrictive hypothesis about 
the model, since the results are computed and need not to be solved analytically. However, 
the problem to state general propositions about the dynamics of the model starting only from 
point observations remains.  
Another way of stating more or less the same thing is the follow. Both an analytical model and 
a simulation model are expressed in their structural form, although in the simulation model 
more flexible rules may be specified instead of equations (one example is the following, 
hypothetical, rule for determining firm growth: “first look at the particular firm which is closest 
in size; if it exits the market, do the same with a probability p, otherwise grow accordingly to a 
function of some other parameters” – try to express this with a formula!). By solving an 
analytical model, we find the only one reduced form corresponding to the structural form of 
the model. This is impossible to do in a simulation model. The reduced form (the data 
generating process) remains unknown. But we may estimate the reduced form (better: the 
local data generating process) on the artificial data resulting from a number of (somehow 
designed) artificial experiments. This is the way I proceed. Of course, it is always possible that 
as soon as we move to other values of the parameters, the local data generating process will 
change dramatically, for example exhibiting singularities. But if the design of the experiments 
is sufficiently accurate, this problem becomes marginal, since we’re not really interested in 
what happens only with an infinitesimal probability. Moreover, critical values of the parameters 
can often be guessed, and thus included in the experiments. 
 
Before moving on, one last issue has to be addressed. In estimating the local data generating 
process, one functional form must be chosen. Having specified the micro-rules of the artificial 
world, the researcher generally knows which variables affect the outcome variable of interest, 
even if sometimes, in complicated models, the causal link between inputs and outputs may be 
quite indirect, and thus remain at first unnoticed. However, there are methodologies to 
reconstruct the causal structure from statistical data, as well as software applications that do it 
automatically (see, for instance, the Tetrad project at Carnegie Mellon University -
http://www.phil.cmu.edu/projects/tetrad/). I plan to further investigate this approach in future 
publications, since I’m confident that the causal structure of the models developed here is 
simple enough to be known in advance. However, the issue of the choice of a functional form 
remains to be addressed. This is always an arbitrary choice, and may lead to very different 
specifications of the aggregate laws of the system.   
 
However, insofar two different specifications provide the same description of the dynamics of 
the model in the relevant range of the parameters, we should not bother too much about 
which one is closest to the ‘true’ data generating process. Differently from estimation on real 
world data, the problem of a mispecified model unable to make good predictions in out-of-
sample data is not important here, since we’re not constrained to particular ranges of the 
parameters in the design of the artificial experiments. 
 
My approach to (meta-)model selection is to adopt the general-to-specific methodology 
(Hendry et al., 2002 ): a very general specification is first laid down, where all input variables 
are included among the regressors, as well as their powers, interaction terms and so on. Then, 
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through a multi-test procedure, the specification is reduced to relevant terms only, by 
progressive elimination of non-significant variables.  
 
 
4. The simulation 
 
The simulation model is written in Java code, using JAS libraries, developed by Michele 
Sonnessa at the University of Torino (http://sourceforge.net/projects/jaslibrary/). Simulations 
can be monitored graphically. Here is a typical simulation output with parameters:  
 
Entry mechanism:    Excess Demand  
Exit mechanism:    Excess Supply Affects All  
Initial number of firms:   100 
Maximum sector dimension:  300 
α:     1.0 (Take-up rate) 
µ:     0.1   
σ:      0.1 
m:     1.0 (mean heteroskedasticity) 
s:      0.0 (variance homoskedasticity) 
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Figure 2: Simulation output 
 

  
(a) Firm number (b) firm size: Mean, Variance, minimum and maximum  

  
(c) Firm size Gini coefficient, Birth and Death rate (d) Firm size: Percentiles 

  
(e) Firm size distribution (f) Growth rate vs. size 

 
(g) Growth rate vs. size linear regression coefficients:  
 R(t) = a + b S(t) 
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Here, parameters have to be edited by hand at each run. Clearly, this reduces the feasibility of 
a big number of experiments, and compromises the possibility of replication. JAS Multi-Run 
feature has thus been used, which allows batch runs of the simulation with parameters 
changing according to a pre-defined algorithm at each run4. 
 
 
5. Long run equilibrium 
 
The R-distribution we’re interested in is obviously an equilibrium distribution. Thus, the issue 
of when the equilibrium is reached becomes relevant. In other words, we need to decide when 
to stop each simulation run. Moreover, since simulations are performed in a batch mode, the 
‘human eye’ criterion cannot be applied. The fact that we want to focus only on equilibrium 
relationships between the variables doesn’t mean we’re not interested in the out-of equilibrium 
dynamics. After all, one of the strengths of simulations is exactly the possibility of studying the 
disequilibrium dynamics of a system: even when a system can be characterized analytically in 
equilibrium, its out-of-the-equilibrium behaviour can often be investigated only through 
numerical simulations. Moreover, it is quite relevant to know how long it takes to reach the 
equilibrium: a model could be empirically relevant also when it explodes or implodes, as long 
as it takes long enough. 
 
Thus, the wait-for-long-enough criterion is also not appropriate. We cannot wait – say – 
10.000 periods before stopping a simulation and analysing its results because we want to know 
whether the system reached approximately the same state much earlier! Moreover, waiting too 
much reduces the number of experiments that can be done. 
 
So, I developed a few algorithms to determine when the system becomes approximately 
stable. The first algorithm looks at whether a moving average of the median size and a moving 
average of the firm number remain constant, i.e. the first differences of the moving average 
remain around zero (0 + 0.1 times the moving standard error) for a sufficiently long period of 
time (if n is the moving average windows, the first differences must remain in the range in 
95% of the last n periods of the simulation). The median is considered, rather than the mean, 
for rubustness concerns. 
 
The second algorithm looks directly at the mean of the size distribution and at the firm 
number, and checks whether these series remain in a given range for long enough. Every 5n, 
periods, where n is the moving average window used in the first algorithm, the two ranges are 
computed again. The first one, centred on  the average dimension at that moment in time, is 
0.2 times the standard deviation of firm size wide, while the second one goes from 1/2 to 3/2  
of the firm number at that moment in time. The two series must remain bounded within these 
ranges for 5n periods. 
 
Altogether, these two algorithms work pretty well (which one is invoked first depending on the 
values of the parameters), and save on average around 75% of the time compared to an 
appropriate constant length criterion. 
 
Simulation runs are also stopped when the firm number becomes too high (of course, entry 
dynamics are needed), in order to prevent the simulation to go slower and slower. Firm size in 
this case implodes, and the system is considered to exhibit ‘non-reasonable’ behaviour. 
 
If no other stop mechanisms have already become binding, the wait-for-long-enough criterion 
is invoked, and the simulation is stopped after 2,000 periods. If the outcome looks 
‘reasonable’, the simulation is re-run in the graphical mode, in order to investigate more in 
depth the dynamics of this slowly- or non-converging system. 
 
 

                                          
4 this feature also allows model calibration, if needed. 
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6. Results 
 
As expected, the homoskedastic system (mean and variance of the growth rate independent of 
size) with no entry and exit exhibits very fast diverging dynamics, as soon as we move away 
from the line of figure 1.  
 
6.1 Reasonable dynamics without entry and exit mechanisms 
 
6.1.1 Mean heteroskedasticity 
 
The only way of obtaining stable systems within a ‘pure’ multiplicative model is to give away 
with the homoskedasticity assumption. In particular, heteroskedasticity of the mean of the 
growth rate is needed. However, as it will be shown, this heteroskedasticity doesn’t have to be 
assumed all the times, since it can be found in the data when variance heteroskedasticity 
instead is assumed. 
 
Figure 3 presents the outcomes of many simulation runs, where all parameters are kept 
constant except for the mean of the growth rate.  
 
Figure 3 shows the case of mean heteroskedasticity: the mean of the growth rate keeps 
declining with size with an exponential speed, governed by the parameter m, which remains 
fixed at 1.0 (see equation 10). It plots the different values of long-run (equilibrium) mean firm 
size, for different values of the mean of the growth rate (the latter are referred to a size 1 
firm). Standard deviation of the growth rate remains fixed at 0.1. This value of the standard 
deviation is low enough to guarantee that the number of firms remains constant, since it is 
very unlikely that any firm would pick up a growth rate lower than –1. However, in an infinite 
amount of time all firms will eventually experience such a casualty, and thus disappear. 
 
The reason why the system reaches a ‘reasonable’ steady state, for values of µ (1) big enough, 
is the balance between the explosive tendency of smaller firms and the implosive tendency of 
bigger firms. Thus, all we need to have R-distributions is that the average of the growth rate at 
initial size is in the explosive region of figure 1. One typical resulting firms size distribution is 
reported in figure 4. 
 
Figure 3: Long-run dynamics, mean heteroskedasticity (multiple simulation runs) 
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Figure 4: Firm size distribution, mean heteroskedasticity (single simulation run) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mainly with the purpose of testing my (general-to-specific) interpretation procedure, we run 
over 1,500 simulations with varying values of the input parameters, namely: 
 

µ (1) ∈ [0.0, 0.40]  
σ (1) ∈ [0.1, 0.25]  
m ∈ [0.1, 1.5]  

 
Most simulations ended because one of the two algorithms hit (codes 1 and 2 in the table 
below). 59 runs ended because no firms were active (i.e. had positive size) anymore (code 3), 
and 72 runs ended because maximum time (10,000 periods) was reached (code 4). 
 
 

 
       stop |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |        603       37.95       37.95 
          2 |        855       53.81       91.76 
          3 |         59        3.71       95.47 
          4 |         72        4.53      100.00 
------------+----------------------------------- 
     Total  |       1589      100.00       

 
Code 4 does not necessarily imply the system did not reach yet its ‘equilibrium’ behaviour. 
More often (especially maximum time was set so high), it means that its long run dynamics 
are simply more volatile than allowed by the stop algorithms. This is shown for example in 
figure 5, which represents one specific code-4 run outcome. 
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Figure 5: Firm size distribution when long-run stopping mechanisms don’t work, mean 
heteroskedasticity (single simulation run) 
 

 
 
 
I tested a number of different specifications in order to recover the functional (reduced) form 
of the average firm size as a function of the input parameters, namely µ (1), σ (1) and m. 
 
Following the argument stated above, it could be argued that code-4 runs should not be 
excluded from the econometric analysis: the probability of any particular value being observed 
at maximum time being its (stable) distribution density. However, since they show more 
outcome variability, they lower the explanatory power of the (mean) regression. In order to 
choose an appropriate functional form we excluded these runs, but in the appendix we report 
also the coefficients for the whole sample. 
 
 
My final choice for model specification is the following: 
 

[14]  )1()1(log)1(log)1(log)log( 54321 σβµββσβµβα mmmS +++++=  

 
which corresponds to the following expression for the mean firms size: 
 
[15] 

)]1()1((exp[
)1(

)1( µσ
σ

µ
−= m

m
kS  

 
 
Regression results are reported below (mG is µ (1), sG is σ(1), mG_m stands for m*µ (1), 
sG_m for m*σ (1)): 
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Table 2: regression results for long-run average firm size, mean heteroskedasticity 
 
  Source |       SS       df       MS                  Number of obs =    1455 
---------+------------------------------               F(  5,  1449) = 1812.79 
   Model |  817.530929     5  163.506186               Prob > F      =  0.0000 
Residual |   130.69403  1449  .090196018               R-squared     =  0.8622 
---------+------------------------------               Adj R-squared =  0.8617 
   Total |  948.224959  1454  .652149215               Root MSE      =  .30033 
 
------------------------------------------------------------------------------ 
  log_mS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  log_mG |   .7277577    .017495     41.598   0.000       .6934394     .762076 
  log_sG |  -1.073993   .0607705    -17.673   0.000        -1.1932   -.9547855 
   log_m |  -.9772666   .0471145    -20.742   0.000      -1.069686   -.8848467 
    mG_m |  -1.868199   .2107114     -8.866   0.000      -2.281531   -1.454867 
    m_sG |   2.438006   .6188691      3.939   0.000       1.224031    3.651981 
   _cons |    1.58892   .1888207      8.415   0.000       1.218529    1.959311 
 
 
Of course, I don’t expect this aggregate law to be the true data generatine process (DGP). 
However, this turns out to be a good approximation of the local DGP. Such a law could for 
example be used to test whether a market satisfying the assumptions of this particular model 
has reached a sort of ‘steady state’. 
 
6.1.2 Variance heteroskedasticity 
 
Figure 6 shows the case of variance heteroskedasticity: the standard deviation of the growth 
rate keeps declining with size with an exponential speed, governed by the parameter s, which 
takes the three different values of 0.5, 1.0 and 1.5 (see again equation 10). It plots the 
different values of long-run (equilibrium) mean firm size, for different values of the standard 
deviation of the growth rate (the latter are referred to a size 1 firm). Average growth rate 
remains fixed at 0. 
 
Figure 6: Long-run dynamics, variance heteroskedasticity (multiple simulation runs) 
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The system works as follows. Bigger variance for small firms imply some firms will grow, while 
others will shrink considerably. When a firm shrinks to zero, it exits the market. This implies 
the average size does not decline steadily to zero, as in the standard Gibrat version. The 
asymmetry due to the threshold at 0 induce negative correlation between the mean of the 
observed growth rate and size, as in the mean heteroskedasticity case. Of course, the number 
of active firms becomes smaller and smaller. However, some firms will pick up high growth 
rate at their initial stage. As they grow bigger, the variance of their growth rate becomes 
smaller. This induces a sort of lock-in effect: once a firm has become big, it can’t move 
backwards as easily. However the tendency to implode due to the zero growth rate mean 
assumption is still at work: slowly, big firms keep shrinking. But the smaller they become, the 
bigger the variance of the growth rate: again, some will disappear and others will grow. 
Empirically, after a short time the number of active firms becomes quite stable, i.e. ‘unlucky’ 
firms who got negative returns in their initial stage disappear, while ‘lucky’ firms become big 
enough to avoid this risk. Only running the simulation for a very long time the system will 
eventually reach its final, empty, state. To give an idea, with s = 1.0 and a standard deviation 
for a size-1 firm of 0.5 (we chose such a high but not unrealistic value in order to magnify the 
effects of this parameter), starting from a population of 100 firms the system adjusts to 
around 30 firms in 700 periods, and then becomes quite stable. After 20.000 periods there are 
still more than 20 firms in the system.  
 
No matter what the very-long-run equilibrium is, the system exhibits a ‘reasonable’ behaviour, 
for reasonable values of the parameters and for a reasonable time horizon (see Figure 7 for 
one specific simulation outcome). In particular, the mean growth rate µ must be included in 
the ‘implosion set’ of figure 1, because the system cannot contrast explosive firm dynamics. 
 
Figure 7: Total population and firms size distribution, variance heteroskedasticity (individual 
simulation run) 
  

  
  
 
 
 
6.2 Reasonable dynamics with entry and exit mechanisms 
 
So far, I have showed that in order to get ‘reasonable’ dynamics in a multiplicative model, at 
least some form of mean or variance heteroskedasticity in the growth rate of firms must be 
assumed. However, models without entry or exit dynamics are not very interesting in 
themselves, but for benchmarking purposes. I now turn to investigating extensions of the 
basic multiplicative model which take into consideration that the market could be characterized 
by a turnover of firms. As it will be shown, weaker conditions are necessary in order to get 
‘reasonable’ dynamics in such a market.  
 
When entry or exit mechanisms are specified within the context of mean or variance 
heteroskedasticity, R-distributions are again obtained. Moreover, the risk of the market 
vanishing because all firms dry out is avoided either by specifying a threshold entry (like 
Excess Demand entry) or by specifying a non-threshold entry guaranteeing a sufficiently high 
number of new firms, like Proportional Number or Proportional Dimension entry. 
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R-distributions can also be obtained in the case of homoskedasticity. Here, however, a 
threshold mechanism must be specified both for entry and for exit.  
 
This is an explanation of the underlying dynamics. 
We have already seen that multiplicative models suffer from two contrasting tendencies, either 
to implosive or to explosive behaviour. To reach R-distributions, these two tendencies have to 
be balanced. To contrast implosion, a natural threshold arises from the fact that no firm can 
shrink below size 0. Removing 0-sized firms from the market (or any firm below a minimum 
size) induces, as I showed above, a negative correlation between size and growth rate. All we 
need then is that enough new firms are created, in order to preserve the system from 
extinction. Of course, if the growth rate variance is too small, it becomes too rare for any firm 
to actually fall below the minimum size. Firm dimension would then slowly deflate towards 
zero. Moreover, if new firm dimension is drawn from the (lower part of the) existing firm size 
distribution, the resulting distribution will be centered very close to the removal threshold (see 
figure 8 for one typical simulation outcome). However, by choosing for example a minimum 
size of 0.5 the resulting distribution (for an average growth rate of 0 and a standard deviation 
of 0.1) is obtained: 
 
Figure 8: Firm size distribution with positive minimum size, zero average growth and no entry 
(single simulation run) 
 
 

 
 
 
The next problem is to specify a mechanism that lets an appropriate number of new firms to 
enter the market, i.e. a number ‘in the long run’ approximately equal to that of disappearing 
old firms (falling below the minimum size threshold). Threshold entry mechanisms 
guarantee this condition is always met. Non-threshold mechanisms may not work. For 
instance, Proportional Dimension (Blank & Solomon) mechanism is able to contrast implosion, 
as we have already seen, but Proportional Number is not.  
 
By specifying an Excess Demand entry mechanism, interesting dynamics as the one depicted 
in figure 9 for the total number of firms in the market can be obtained: 
 
Figure 9: Total firm number with positive minimum size, zero average growth and Excess 
Demand entry (single simulation run) 
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One final note. Threshold mechanisms, as I have defined them, work by comparing total 
dimension (capacity) with an exogenously given demand. New firms are added if supply falls 
short of demand, and new firm size is drawn from the lower part of the existing firm size 
distributions. If the lower threshold is fixed at 0, these mechanisms keep introducing new firms 
as the existing ones shrink, since the effect of new capacity on total capacity gets smaller and 
smaller (adding a 0-sized firm doesn’t help in increasing supply!).  
 
Thus, my conclusion is that in order to contrast implosion and get R-distributions, 
threshold entry mechanisms are enough, given a non-zero minimum size. 
It is important to note that – as long as the danger remains on the implosion side – non-
threshold exit mechanisms could well be assumed, in conjunction with threshold entry 
mechanisms. 
 
Let’s now turn to explosive behaviour, where things get tougher. 
Clearly, non-threshold mechanisms cannot work, in general, because they do not pose any 
limit to firm growth.  
But even if a threshold exit mechanism is specified, the exogenously defined total capacity 
available is generally monopolized by a single firm. In Excess Supply Affects Small total 
overcapacity hits only small firms, while in Excess Supply Affects Large it hits only large firms. 
However, both mechanisms lead to monopoly. This is obvious if no entry mechanism is 
specified, because no new firms enter the market, while old firms keep exiting. For Excess 
Supply Affects Small it remains true with any entry mechanisms. For Excess Supply Affects 
Large it remains true with most entry mechanisms. The only way out would be specifying an 
entry mechanism where new firms enter the market at every period, with size independent of 
the existing firm size distribution and small. The number of firms to enter the market should 
be either independent of the number of existing firms, or negatively dependent. Not an 
appealing solution.  
 
There is only one class of threshold exit mechanisms which preserve the system from moving 
towards a monopoly: exit mechanisms where overcapacity affects all firms in the market, 
reducing their growth rate, like in the Excess Supply Affects All one. This ultimately provides a 
solution to the explosive behaviour caused by a high average growth rate, by reducing it! 
However, even when such a mechanism is specified, if the minimum size is set to 0 the system 
moves towards a monopolistic situation, with all very small firms but one. 
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Figure 10: Firm size distribution with Excess Supply Affects All exit mechanism, 0 minimum 
size and µ = 0.2; 
 

 
  
 
With positive minimum size this risk is avoided.  
 
In conclusion,  I have shown that in order to contrast explosion and get R-distributions, 
threshold exit mechanisms that penalize all firms are enough, given a non-zero 
minimum size. 
 
At this point, it can be noted that the two problems of implosion and explosion are com 
disjoint. This is a general characteristic of multiplicative models. To avoid implosion, one 
should care about entry, and to avoid explosion one should care about exit. Thus, in order to 
obtain a stable system for a wide range of (homoskedastic) mean growth rates, we can 
combine the two results presented above.  
 
Figure 11 shows the long-run relation between mean firm size and mean growth rate when 
Excess Demand entry and Excess Supply Affects All exit mechanisms are included, with a 
minimum size of 0.5 and a standard deviation of the growth rate of 0.1. 
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Figure 11: Long run dynamics, Excess Demand entry and Excess Supply Affects All exit 
 

 

 
 
 
 
8. Concluding remarks 
 
In this paper I have shown that – in order for a multiplicative model of firm growth to exhibit 
reasonable dynamics for a wide range of average growth rate, we have either to assume 
heteroskedasticity in the growth rates, or to include entry and exit mechanisms. While other 
particular, ad hoc, entry and exit mechanisms could be imagined, I have shown that combining 
the broad class of threshold entry mechanisms and the more restricted class of threshold exit 
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mechanisms where overcapacity penalizes all firms, lead to R-distributions even in the case of 
growth rate homoskedasticity, given a non-zero minimum threshold for firm size. Threshold 
mechanisms are defined as rules where entry and exit are determined with reference to an 
exogenously defined total capacity of the market. 
 
It is interesting to note that real data seem to confirm the existence of many of the above 
examined features leading to R-distributions at work at the same time. Caves (1998) in his 
enumeration of stylized facts on the turnover and mobility of firms, indicates that «1. The 
variance of firms’ proportional growth rates is not independent of their size but diminishes with 
it […] 2. Mean growth rates of surviving firms are not independent of their sizes but tend to 
decline with size and also with the unit’s age (given size) […] 3. Entry and exit are intimately 
involved in growth-size relations. Entry is more likely to occur into smaller size classes, and 
the likelihood of a unit’s exit declines with its size». A positive minimum size is obviously at 
work, since it is difficult to imagine a firm asking for no more than a very small fraction of the 
entrepreneur’s time. 
 
However, in order to preserve the skewness of the firm size distribution, the amount of 
variance heteroskedasticity (the rate of decline of the standard deviation of the growth rate, s) 
must be small, in order to maintain some variance in the growth rates when firm size 
approaches its long-run distribution. Thus, the smaller the mean growth rate (or the higher the 
amount of mean heteroskedasticity), the more shifted to the left will be the long-run 
distribution of firm size, and the smaller the amount of variance heteroskedasticity that can be 
supported. 
 
Finally, to my judgement future research on these issue could go in three directions. First, 
generalized Gibrat models could be calibrated on real data, by choosing the appropriate entry 
and exit mechanisms and the values of the relevant parameters in order to characterize 
different industries. Second, the limit distribution of firm size could be computed using these 
calibrated models, thus providing a measure whether any particular market is in equilibrium 
(close to its implied long-run distribution). Third, economic models of firms or employees 
behaviour could be developed, with the aim to reconstruct ‘from the inside out’ or ‘from the 
bottom up’ the aggregate behaviour implied by these ‘reasonable’ multiplicative models. 
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Appendix 
 
Regression results for Mean Heteroskedasticity model, full sample 
 
 
  Source |       SS       df       MS                  Number of obs =    1527 
---------+------------------------------               F(  5,  1521) =  847.94 
   Model |  1026.89056     5  205.378113               Prob > F      =  0.0000 
Residual |  368.400658  1521  .242209506               R-squared     =  0.7360 
---------+------------------------------               Adj R-squared =  0.7351 
   Total |  1395.29122  1526  .914345493               Root MSE      =  .49215 
 
------------------------------------------------------------------------------ 
  log_mS |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
  log_mG |   .9226223   .0263594     35.002   0.000       .8709176    .9743269 
  log_sG |  -1.312518   .0958111    -13.699   0.000      -1.500453   -1.124582 
   log_m |  -.9095693   .0744303    -12.220   0.000      -1.055566   -.7635725 
    mG_m |  -3.194521   .3311262     -9.647   0.000      -3.844033   -2.545008 
    m_sG |   3.339967   .9916963      3.368   0.001        1.39473    5.285204 
   _cons |    1.58423   .3006232      5.270   0.000       .9945503     2.17391 


