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Abstract 

In this paper I review the main strengths and weaknesses of agent-based computational 

models. In particular I rationalise the main theoretical critiques, which point to the 

following problematic areas: (i) interpretation of the simulation dynamics, (ii) 

estimation of the simulation model, and (iii) generalisation of the results. I show that 

there exist solutions for all these issues. Moreover, this paper clarifies some 

confounding differences in terminology between the computer science and the 

economic literature.  
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Introduction 
 

Our empirical tools are wonderful for ceteris paribus problems, but many 
issues regarding labour institutions are mutatis mutandis problems. Lots of 
interrelated changes with no empirical counter-factuals. This implies that if 
we are to make progress, we need something more in our tool bag. Game 
theory? A language and framework, but not sufficiently specific. General 
equilibrium? Too general and static. Then what? In my course at Harvard, I 
would invariably end with frustrated hand-waving, with no real direction to 
suggest. But now . . . 
 
There are a new set of theoretic and empirical tools that seem suited for the 
problem of analysing labour systems and the War of the Models. The tools 
range from theoretical simulations of nonlinear dynamic systems to a 
theoretic data-mining. Complexity analyses. Neural networks. Data-mining 
for knowledge discovery. Landscape models. Artificial agent simulated 
societies. Chaos theory. Complex adaptive systems. Nonparametric 
statistical tools of diverse shapes and sizes. Cellular automata.  

 

Richard Freeman (1998, p.19) seems to believe that some of the techniques at the 

intersection of Evolutionary Economics, Computer Science and Cognitive Science 

should gain full right of access into the economists’ toolbox. Robert Axelrod identifies 

several purposes for the use of simulation in the social sciences. Among these stand 

prediction, proof and discovery (Axelrod, 1997): «[u]sing simulation for prediction can 

help validate or improve the model upon which the simulation is based. Prediction is the 

use which most people think of when they consider simulation as a scientific technique. 

But the use of simulation for the discovery of new relationships and principles is at least 

important as proof or prediction».  

 

Axelrod then cites the classical Schelling’s (1978) model of residential tipping as an 

example of how a simple simulation model may provide «an important insight into a 

general process»1, and Conway’s Game of Life (Poundstone 1985) as a demonstration 

that extremely complex behaviour can result from very simple rules. Simulations can 

also be used in order to test economic theories developed with more standard modelling 
                                          
1 Note that although agent-based simulation models clearly and heavily rely on the wonders offered by 
modern computers, it is not correct to characterize them as computer models. Schelling’s model, for 
instance, requires nothing else but a sheet of paper and some buttons.  
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approaches, with particular reference to the issues of robustness and the convergence to 

the equilibria, as stressed by Sargent (1993), or for data analysis, where - again with 

Freeman - «they offer nonparametric statistical models for dealing with nonlinearities 

and discovering patterns in large data sets». 

 

Much debate has going on in recent years on the virtues and sins of these techniques. In 

this paper I review the main arguments in favour and against the use of agent-based 

simulation for economic modelling. In particular, I will briefly discuss what agent-based 

simulation models are (section 1), before turning to rationalise the discontent many 

economists feel about this methodology. I will thus compare agent-based models and 

analytical models with respect to the issues of interpretation of the results (section 2), 

estimation (section 3) and generalisation (section 4). A cross-cutting theme is the 

relationship between real and simulated data. Section 5 summarises and concludes. 

 

To my knowledge, the perspective adopted is an original contribution, offering a bridge 

between the simulation literature and the more traditional economic modelling culture. 

 

1. Agent-based computational models 
 

As Leigh Tesfatsion (2003), one of the pioneers of this technique in the field, puts it, 

«[a]gent-based computational economics (ACE) is the computational study of 

economies modelled as evolving systems of autonomous interacting agents. ACE 

researchers rely on computational frameworks to study the evolution of decentralized 

market economies under controlled experimental conditions».  

 

In a simulation agents represent the basic entities of the system, or an aggregation of 

basic entities. For instance, individuals, families, vacancies, firms, etc. can all be 

thought of as ‘agents’. The interaction between different agents is regulated by a precise 

schedule. Aggregate behaviour is then reconstructed ‘from the bottom up’, i.e. by 

computing what emerges from the micro-behaviour of the agents. Agent-based 
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simulations are modular in nature, and produce results that can be explored at different 

levels of aggregation, while always retaining their micro-foundation. 

 

Agent-based simulation models have two distinguishing features. One is being ‘agent-

based’, i.e. following a micro approach; the other is being simulation models, i.e. 

following an inductive approach to the discovery of regularities. Both features are not 

peculiar of the methodology. Many analytical models have micro-foundations, and 

many simulation models adopt an aggregate perspective, as in System Dynamics 

(Forrester, 1991). However, it is the conjunction of the two approaches that defines the 

methodology, allowing for a great flexibility in the design of the model, while avoiding 

all the problems connected with merely aggregate representations of the world (Kirman, 

1999, 2001a). Agent-based simulation models are a third way between fully flexible but 

not computable and hardly testable literary models (which provide no more than a 

verbal description of the causal relationships behind a given phenomenon) on one side, 

and more transparent but highly simplified analytical models (Ostrom, 1998; Gilbert 

and Terna, 2000). The biggest advantage of ACE models with respect to the analytical 

approach is their flexibility, since the results are computed and need not to be solved 

analytically. With ACE, the researcher gains almost complete freedom about the 

specification of the interaction structure and the individual behaviour2.  

 

One of the main purposes for writing an ACE model is the desire to gain intuitions on 

the two-way feedback between the microstructure and the macrostructure of a 

phenomenon of interest (Kirman, 2001b). How is it that simple aggregate regularities 

may arise from individual disorder? Or that a nice structure at an individual level may 

lead to a complete absence of regularity in the aggregate? How is it that the complex 

interaction of very simple individuals may lead to surprisingly complicated aggregate 

dynamics? Or that sophisticated agents may be unable to organize themselves in any 

interesting way? Another, related, purpose «is to use ACE frameworks normatively, as 

computational laboratories within which alternative institutions, market designs, and 
                                          
2 As it is always the case, this freedom requires caution. With less need to adopt standard modelling 
frameworks, models become less comparable. And a greater dispersion in modelling choices leads to a 
greater variability in the quality of ACE works.    
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organizational structures in general can be studied and tested with regard to their effects 

on individual behaviour and social welfare» (Tesfatsion, 2003). Both concerns relate to 

the importance of interaction in shaping social structures and individual and aggregate 

dynamics.  

 

However, many economists remain sceptical about this methodology. It is not the micro 

approach that is questioned. Actually, for what regards the micro-foundations criticism 

go the other way round from ACE practitioners towards traditional analytical 

modelling, where «[h]eavy reliance is placed on externally imposed coordination 

devices such as fixed decision rules, common knowledge assumptions, representative 

agents, and market equilibrium constraints. Face-to-face interactions among economic 

agents typically play no role or appear in the form of highly stylised game interactions» 

(Tesfatsion, 2003). Rather, the main concern of economic orthodoxy is that simulations, 

as opposed to analytical modelling, “do not prove anything”. This claim turns out to 

target three different problems of agent-based simulations. The first one is how to 

recover the input/output transformation function (the reduced form) implied by the 

simulation model, and is mainly relevant at a theoretical level in order to gain a better 

understanding of the behaviour of the system. Only artificial data, i.e. data produced by 

the simulation model itself by varying the parameters, are involved here. The second 

one is how to estimate the structural coefficients, and it is relevant at an empirical level, 

in order to allow comparison of the model with real data. The third one is how to 

ensure that the model will be able to make predictions also for cases that are not in the 

data on which the model is validated. It is directly related to the issue of the 

generalization of the results. The three problems are discussed in the next sections.  

 

2. Recovering the reduced form 
 

In a micro model, being it an analytical model or a simulation one, the behaviour of 

each agent is completely specified, but generally dependent on the behaviour of other 

agents. This (structural) description of the system is generally not enough. In order to 

gain a full understanding of how the model works, individual and aggregate behaviour 
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must be explained in terms of the (exogenous) parameters and variables, in a reduced 

form. Let yi be a vector of dependent individual variables, xi a vector of independent 

individual variables and Y a vector of endogenous aggregate variables. The micro model 

specifies: 

[1] yi = s(xi , y-i , Y ; αi) 

 

with y-i , x-i being the vector of (dependent and independent) characteristics for all 

individuals different from i, and αi being the coefficient vector. 

 

By solving an analytical model, if possible, we find the only one reduced form 

corresponding to the structural form of the model, both at an individual and at an 

aggregate level: 

 

[2] yi = f(xi , x-i ; β) 

Y = F(X ; γ) 

 

with X  = [xi] being the matrix containing the independent variables for all individuals, 

and β and γ being the coefficient vectors. 

 

In a simulation model, these reduced forms remain unknown, and only inductive 

evidence about the input/output transformation implied by the model can be collected. 

In other words, simulations suffer from the problem of stating general propositions 

about the dynamics of the model starting only from point observations. Due to this 

‘original sin’, simulations are considered to be less general than analytical models3. 

Since scientific explanations are generally defined as the derivation of general laws, 

which are able to replicate the phenomena of interests (Hempel and Oppenheim, 1948; 

Hempel, 1965), simulations appear to be less ‘scientific’ than analytical models. Note 

that this is not equivalent to saying that simulations are an inductive way of doing 

                                          
3 The issue of generality here is of course different from the one related to the problems of equifinality 
and overfitting, which will be discussed later.  
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science4. As Axelrod (1997) points out, «[s]imulation is a third way of doing science. 

Like deduction, it starts with a set of explicit assumptions. But unlike deduction, it does 

not prove theorems. Instead, a simulation generates data that can be analyzed 

inductively». Induction comes at the moment of explaining the behaviour of the model.  

 

Why is the problem of recovering the reduced form important? After all, we have the 

structural form, which in general has a larger informational content. The fact is that, 

even if a simulation model is able to produce ‘interesting’ dynamics - for instance in 

accordance to some stylised facts - two issues are raised. First, a casual explanation of 

these dynamics, in terms of the simulation inputs, is often useful5. Second, the 

possibility of the system showing other ‘undesired’ dynamics has to be ruled out. The 

first issue is the problem of interpreting the simulation results; the second is the 

problem of sampling the parameter space. A third problem, namely the relevance of the 

reduced form for estimation purposes, is discussed in the next section. 

 

When Axtell (2000) argues that «each run of such a model yields is a sufficiency 

theorem, [yet] a single run does not provide any information on the robustness of such 

theorems», he implicitly refers to the second issue. However, he doesn’t stress that such 

theorems are hardly useful, it they simply connect ‘point-to-point’ inputs to outputs (in 

this sense they are far from the theorems Axelrod refers to). To have more interesting 

‘laws’, connecting variation in inputs to variation in outputs, an interpretation of the 

underlying dynamics is needed.  

 

2.1 Interpretation 

Let’s start with the interpretation problem, i.e. how to extract the ‘laws’ governing the 

system from the observed regularities in the simulated data. This amounts to find 

                                          
4 actually, they are a form of abductive inference (Leombruni, 2002). The relationship between induction, 
abduction and causal explanation has been extensively investigated in the philosophy of science literature, 
and will not be reviewed here (see for instance Peirce, 1955). 
5 this allows to provide answers to questions like “what happens, in the model, to the unemployment rate 
if we increase the reservation wage?” or, more generally, “which are the determinants of the 
unemployment rate, in the model?” 
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functions g and G and coefficients φ and  that are good proxies for the real but 

unknown functions f and F in [2]: 

ϕ

ϕ

                                         

 

[3] yi = h(x , x-i  ; φ) 

Y = H(X  ; ϕ) 

 

Note that the coefficients φ and  are not estimates of the ‘true’ reduced form 

coefficients β and γ.  

 

The use of econometric techniques to approximate the input/output transformation 

function, starting from a number of - somehow designed - artificial experiments is 

indeed a common practice. The resulting regression model is also known as metamodel, 

response surface, compact model, emulator, etc. (Kleijnen, 1998).   

 

In estimating the reduced forms on the artificial data, one functional form must of 

course be chosen. Having specified the micro-rules of the artificial world, the researcher 

generally knows which parameters affect the outcome variable of interest, even if 

sometimes, in complicated models, the causal link between inputs and outputs may be 

quite indirect, and thus remain at first unnoticed. Moreover, there are methodologies to 

reconstruct the causal structure from statistical data (see for instance Hendry and 

Krolzig, 2002; Glymour and Cooper, 1999). Of course, the final choice of a functional 

form remains to a certain extent arbitrary, and may lead to very different specifications 

of the aggregate laws of the system. But as long as two different specifications – say g 

and g’, or G and G’ - provide the same description of the dynamics of the model in the 

relevant range of the parameters and the exogenous variables, we should not bother too 

much about which one is closest to the ‘true’ reduced form6.  

 

A brief example may clarify. Suppose to have a structural model of demand and supply: 
 

6 Here, the distinction between in-sample and out-of-sample values, and the objection that two 
formulations may fit equally well the first, but not the latter, is not meaningful. Any value in the relevant 
range can be included in the artificial experiments. The topic is discussed with reference to (structural) 
model selection in a later section. 
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The corresponding reduced form for equilibrium price is: 
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In a simulation model system [4] has no analytical formulation. Thus, the reduced form 

[5] is unknown. However, a number of artificial experiments can be designed and 

performed. Artificial data on inputs (Z and W) and outputs (q and p) are collected. Then, 

after some data mining we could come out with the following specification: 

 

[6] εϕϕϕϕ +⋅+++= WZWZp 3210  

 

Finally, after having estimated in our artificial data the parameters ϕ , we have our 

approximation of the reduced form [2]: 

 

[7] WZWZp ⋅+++= 3210 ˆˆˆˆ ϕϕϕϕ  

 

Note that this approximation can’t be used for further estimation on real data. It has no 

unknown coefficients. It simply describes how the simulation model behaves, for given 

values of the structural parameters. As such, it can be used to assess whether the 

simulation model is able to mimic the phenomenon of interest, by imposing the same 

metamodel [6] on real data, and comparing the coefficient vector ϕ  estimated on the 

artificial data with the coefficient vector ϕ  estimated on the real data.  

ˆ
~

 

Now, different coefficient vectors ϕ  are obtained for different values of the structural 

parameters vectors d and s. Intuition may suggest that we are not far from being able to 

ˆ
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estimate the structural parameters themselves, for instance by minimising the distance 

between  and ϕ . I leave a discussion on this topic to a dedicated section, while 

simply anticipating that, if the model is identified, estimates for the structural 

parameters can be obtained. Here, we are still dealing with the goal of characterizing the 

unknown input/output transformation function [2]. Which values then should we choose 

for the structural parameters vectors d and s, in performing our simulation experiments?  

ϕ̂ ~

The most immediate answer is: their estimates! Plug them in, and keep them constant 

throughout all simulation runs. After all, who cares about the behaviour of the model for 

implausible values of the parameters? All we need is some sensitivity analysis around 

the estimated values of the structural coefficients. Note that the proposed approach 

involves a two-stage procedure, which is exactly the opposite of the standard practice. 

In dealing with analytical models, first comes the derivation of the reduced form, and 

then the estimation of the structural parameters.  

 

A second approach allows for a broader description of the true input/output 

transformation function, but requires more computational burden. We may express the 

input/output transformation functions in a different way, including the structural 

parameters α in the specification: 

 
[3’] yi = g(x , x-i , αi , α-i ; φ’) 

Y = G(X , A ; ϕ’) 

 

with A = [αi] being the matrix of all individual parameters. Then, in the artificial 

experiments variation in the value of the structural parameters is also included. 

However, even in the very simple example provided above, this may lead to a highly 

complicated specification for the metamodel to be estimated in the artificial data. 

 

Moreover, when the structural parameters α are included but the structural model is not 

identified, there may be a number of vectors φ’ and ϕ’ for each given specification g 

and G, that approximate equally well the real input/output transformation implied by the 

model. 
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2.2 Robustness 

The second problem concerns the possibility that the artificial data may not be 

representative of all outcomes the model can produce. In other words, it may happen 

that as soon as we move to different values of the parameters, the behaviour of the 

reduced form functions f and F will change dramatically, for example exhibiting 

singularities. The metamodels g and G will then become a poor description of the 

simulated world. While analytical results are conditional on the specific hypothesis 

made about the model only, simulation results are conditional both on the specific 

hypothesis of the model and the specific values of the parameters used in the simulation 

runs.  

 

At a theoretical level, this critique can be contrasted with two observations. First, if it 

applies to what we know about the artificial world defined by the simulation model, it 

also applies to what we know about the real world. The real data generating process 

being itself unknown, stylised facts could in principle turn wrong, at some point in time. 

From an epistemological point of view, our belief that the sun will rise tomorrow 

remains a probabilistic assessment. Second, we should not worry too much about the 

behaviour of a model for particular ‘evil’ combinations of the parameters, as long as 

these combinations remain extremely rare7. If the design of the experiments is 

sufficiently accurate, the problem of how ‘local’ is the estimated local data generating 

process becomes marginal. «While the curse of dimensionality places a practical upper 

bound on the size of the parameter space that can be checked for robustness, it is also 

the case that vast performance increases in computer hardware are rapidly converting 

what was once perhaps a fatal difficulty into a manageable one» (Axtell, 2000). 

 

                                          
7 There is one relevant exception when rare events are the focus of the investigation, for instance as in 
risk management (Segre-Tossani, 2003). Here, simulations may prove extremely useful, by dispensing 
from making assumptions - such as the gaussian distribution of some relevant parameters - which may be 
necessary in order to derive analytical results but have unpleasant properties – like too thin tails. In a 
simulation, the reproduction of such rare events is limited only by the computational burden imposed to 
the computer. However, techniques can be used in order to artificially increase the likelihood of their 
occurrence. Particular combinations for the ranges of the relevant parameter can often be guessed, and 
oversampled in the artificial experiments [Kleijnen, 1998]. 
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3. Estimating the structural coefficients  

 
A second critique of agent-based simulation models is the claim that they often cannot 

be identified in the data. Again, this critique need to be further specified. In particular, 

two different problems seem to be involved. A first issue deals with the possibility to 

recover the structural coefficients from the real data, assuming the model is indeed 

identified. A second issue deals with the claim that ACE models tend to be 

underidentified, due to the fact that they are less parsimonious than analytical models 

(after all, this is their main advantage, ACE guys say) and thus they often lack a 

sufficient number of exclusion restrictions. I now turn to contrast both statements. 

 

3.1 Estimation of identified models 

Let’s start with the first one. In an analytical model the reduced form coefficients β and 

γ of eq. [2] can be estimated in the real data. If the model is identified, there is a one-to-

one relationship between the structural and the reduced form coefficients. Thus, 

estimates for the structural coefficients α can be recovered. In a simulation model this 

can’t be done. However, as already stressed, we could compare the outcome of the 

simulation with the real data, and change the structural coefficients values until the 

distance between the simulation output and the real data is minimised. In the simulation 

literature, this is called calibration. More precisely, we could choose some moments of 

the simulated data, and compare them with the moments of the true data: 

 

[8] ( ))();( realYmYmL −=∆ α  

 

where ∆ is the distance to be minimised with respect to α, L is a loss function weighting 

in some way the different moments, and Yreal are the real data on the outcome variable 

of interest. Known as method of simulated moments, this approach has been introduced 

in the econometric literature by McFadden (1989) and Pakes and Pollard (1989), and 
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has since then found a number of applications for structural models estimation8. Again, 

its main limitation lies in the computational burden it imposes, when the simulated 

models take a long time to run. However, the increasing power of modern computers, 

and the use of particular techniques to reduce the number of times the model has to be 

solved (Ackerberg, 2001; Stern, 2000) greatly reduce the impact of this computational 

limit. 

 

3.2 Underidentification 

A further critique says that the richer specifications of simulation models often lead to 

underidentification, due to the lack of exclusion restrictions. This claim seems to 

suggest that analytical models are characterised by lean specifications only to avoid the 

problem of underidentification, and not because of symbolic tractability.  

 

Moreover, underidentification should not be the fear number one in writing a model. 

Rather, the inability of a model to provide a good description of the underlying 

phenomenon is a much greater limit. «Economic variables are considered by 

econometricians as mutually dependent, but the degree of simultaneity is recognized 

only to the extent that it does not prevent the structural coefficients from being 

identified. But is there any logical reason why the degree of simultaneity must always 

stop short of causing real troubles? The answer given in the literature is that economic 

theory or a priori information often requires us to exclude from a given structural 

relationship a sufficient number of variables so that it become overidentified. […] 

[Q]uite to the contrary, economic theory requires the inclusion of a much larger number 

of variables than those included in the existing models of economic structures. The 

complexity of modern economic societies makes it much more likely that the true 

structural relationships are underidentified rather than overidentified» (Liu, 1960). 

Simulation allows complicating models. This must be considered positively, not 

negatively, since a better description of the phenomena of interest becomes possible. 

The risk of underidentification is often simply unavoidable: analytical models that claim 

                                          
8 For a general exposition of simulation-based estimation, and a review of applications in the empirical 
literature, see Stern (1997) and Liesenfeld and Breitung (1999) 
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to be immune are sometimes only poor models. «When a reasonable structural 

relationship could be obtained either by dropping variables from, or adding variables to, 

an over-simplified relationship, the complexity of the modern economy ensures that the 

‘enlarged’ estimate is a closer approximation to reality than the two simpler ones. 

Obviously, the high intercorrelations of the large number of explanatory variables so 

included would almost certainly result in large standard errors or even wrong signs for 

some of the estimated structural coefficients. When this happens, the only legitimate 

conclusion we can draw is that the complexity of economic reality and the nature of 

basic data are such that the structural coefficients are really indeterminate. The 

temptation to omit relevant variables until a seemingly reasonable and significant 

‘structural estimate’ is obtained must be resisted» (ibidem). 

 

4. The challenge of complexity  

 

In the above-mentioned work, Liu referred to the ‘complexity’ of economic systems 

rather loosely9. However, this issue is related to a feature of agent-based simulations 

that has prompted a fierce methodological discussion. ACE enthusiasts often link the 

future of the methodology to the claim that it is best suited for the analysis of non-linear 

complex systems. Since the world is intrinsically non-linear and complex, the argument 

goes, ACE should take the centre stage in the modelling arena (Goldspink, 2002). Now, 

it is true that non-linear models often resist mathematical analysis, while their 

implementation in an agent-based simulation setting brings little additional cost, with 

respect to linear models. But non-linear models of complex systems generally give raise 

to two problems, which may pose severe limits to the possibility of generalising the 

results. The first one is equifinality (Von Bertalanffy, 1969; Richardson, 2002),  i.e. the 

existence of many structural models characterised by the same fit with the real data, but 
                                          
9 Ironically, the goal of defining complexity seems to be itself ‘complex’. A large literature has 
investigated what complexity means, and which characteristics complex system share (for a recent 
survey, seeRichardson and Cilliers, 2001; it may also be interesting to look at Gell-Mann, 1995, in vol.1, 
no.1 of Complexity). Most definitions relates it to the property of a system «which makes it difficult to 
formulate its overall behaviour even when given almost complete information about its atomic 
components and their inter-relations» (Edmonds, 1999). The difficulty stems from the non-linear 
relationships between the components of the system, and between the microstructure and the 
macrostructure. 
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different out-of-sample properties. The second one is overfitting, i.e. the risk of having a 

model that is too complex, and may fit the noise, in addition to the signal in the data. 

Equifinality challenges the very possibility of choosing an appropriate specification for 

the structural model. Overfitting is a much narrower problem: it does not question the 

feasibility of such a choice, but simply stresses the risk of making a wrong choice. 

 

4.1 Equifinality 

 «[C]omputers offer a solution to the problem of incorporating heterogeneous actors and 

environments, and nonlinear relationships (or effects). Still, the worry is that the entire 

family of such solutions may be trivial, since an infinite number of such models could 

be constructed» (Lansing, 2002). The problem with equifinality is that these different 

non-linear models, equally validated by the real data, are in general characterised by 

totally different out-of-sample dynamics. Thus, they cannot be considered equivalent in 

order to explain the phenomenon of interest, and exploit this knowledge for interpreting 

new events10. The problem is ubiquitous, whenever the system we’re interested in 

modelling is nonlinear. This is in sharp contrast with linear models of linear systems, 

which exhibit only limited deviations for limited departures from the validation set.  

 

The figure below shows this difference. The thick red line between the two vertical lines 

represents real data, taken from an underlying true data generating process. The thinner 

lines represent output from other models that might be developed in order to explain the 

observed data. In case (a), where the underlying true model is linear, it is easy to see 

that the other models deviate only slightly and gradually from the true one, for out-of-

sample data. «Furthermore, we only need to validate our models against limited data to 

ensure that they are valid for all qualitatively similar contexts (in fact we would only 

require two data points!). […] So, the knowledge contained in our models can be easily 

transferred to other contexts – assuming that the world and our models are linear» 

(Richardson, 2002). In case (b), depicting non-linear competing models of an 

underlying non-linear phenomenon, extrapolation from the observed data becomes 

strongly questionable. 
                                          
10 For a recent discussion about observational equivalence see Hendry (2002) 
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Figure 1: Linear models of a linear universe versus nonlinear models of a nonlinear 

universe (source: Richardson, 2002) 

 

 
(a) (b) 

However, some considerations may contribute to a more optimistic picture. First of all, 

the problem applies both to ACE and analytical models. Should we refrain from 

analysing non-linear systems altogether? Clearly not. In the introduction to this thesis I 

provided a number of examples of successful models of non-linear, complex systems. 

What is needed is simply caution in interpreting the results, together with the adoption 

of a number of different modelling strategies. Building non-linear models in order to 

reproduce some complex behaviour is not totally uninformative. At least, they prove 

that the assumptions of the models are sufficient to replicate that behaviour11. Other sets 

of assumptions may prove unable to do it, thus adding to these possibility results equally 

important impossibility ones.  

 

4.2 Overfitting 

As I have already mentioned, one common critique of traditional analytical models is 

that they sometimes offer too a poor description of a phenomenon that may be much 

more rich and complex12. In other words, they fail to replicate the signal that is in the 

                                          
11 More precisely, the hypothesis are INUS conditions, i.e. Insufficient conditions, Necessary to an 
Unnecessary but Sufficient condition (Leombruni, 2002, citing Mackie, 1962). 
12 Clearly, this critique does not apply to models whose aim is simply to show the implications of specific 
mechanisms (think for instance of Akerlof’s market for lemons, which showed the existence of adverse 
selection due to asymmetrical information) many of which may be contemporarily at work and contribute 
to the observed behaviour of some real world phenomenon of interest. These models however have only a 
limited need to be confronted with real data. 
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observed data. However, when choosing to enrich the specification of the models one 

can go too far, up to a point in which they become too complex, and may replicate not 

only the signal, but also the noise of the real data. The random disturbances in the data 

used for calibration are then included in the model as being meaningful. Overfitting has 

the same implications of equifinality: it can easily lead to totally wrong predictions. The 

model has no general validity; it explains only the data on which it was calibrated. 

Complex models contain more information on observed data, but less information on 

future data.  

 

Fortunately, there are a number of techniques to control for the problem of overfitting. 

The simplest one is cross validation. The observed data are split between a calibration 

set and a validation set. Different specifications for the model are estimated on the 

calibration set. Then, the final choice is made by comparing the fit on the validation set. 

The approach can be generalised by considering k partitions of the data. The goodness 

of fit for each specification is computed k times, taking a different fold to be the 

validation set, and the remaining k-1 to be the calibration set, each time. The backdrop 

of cross-validation is that the resulting model may be worse than what we could get 

using the whole data set. Other methods involve considering penalties for richer 

specifications. Overall, a combination of good validation and adherence to the KISS 

(“keep it simple, stupid”) principle should preserve from the risk of overfit. 

 

5. Conclusions 
 

In this paper I have rationalised the main theoretical critiques that can be moved to the 

use of agent-based computational models. They are sometimes summed-up in the claim 

that “simulations do not prove anything”. Discerning the different components of this 

overall judgement is a first achievement of this work. They point to the following 

problematic areas: (i) interpretation of the simulation dynamics, (ii) estimation of the 

simulation model, and (iii) generalisation of the results.  
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Interpretation of the results has to do with recovering the input/output transformation 

function implicit in the system. In analytical models, this can be done by deriving the 

unique reduced form corresponding to the structural form of the model. When the 

structural form is not explicated algebraically, as in simulation models, this is not 

possible. However, a reduced form can be estimated in the artificial data resulting from 

a number of experiments with the simulation model itself. A related problem is the 

robustness of the estimated reduced form, with respect to changes in the values of the 

inputs. This is often referred to as “the curse of dimensionality”, but its relevance has 

been shown to be limited, due to the increasing performances of modern computers, at 

least if the number of structural parameters does not become too large. 

 

The second critique involves the possibility of estimating the structural parameters of a 

simulation model. Since only a proxy for the reduced form can be obtained, differently 

from analytical models it is not possible to exploit the one-to-one relationship between 

the structural and the reduced form parameters, in identified models. But other 

econometric techniques, like the method of simulated moments, can be successfully 

employed for structural estimation in simulation models. A related claim is that agent-

based models suffer from underidentification, since they allow for richer specifications. 

After noting that allowing for richer specifications does not mean requiring them, it is 

argued that the risk of underidentification is often simply unavoidable: analytical 

models that claim to be immune are sometimes only poor models.  

 

Finally, it is recognized that the use of non-linear models for the analysis of complex 

systems may lead to a problem with respect to the possibility of generalizing the results, 

i.e. applying the model either in out-of-sample data or to similar yet different contexts. 

This is due to a characteristic of non-linear systems called equifinality: a number of 

different structural specifications may lead to the same fit in the data, although 

exhibiting totally different behavior with untested inputs. Although theoretically 

relevant, this problem has not prevented the development of many successful models of 

non-linear systems, both in Economics and in many other related fields. The modeler 

should be aware of the problem, and take care in analyzing the results of a simulation 
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model, together with comparing the outcome of different modelling strategies. 

Understanding that a set of assumptions is enough to generate some dynamics of 

interest, or that other assumptions are not able to do it, is often a valuable result to start 

with.   

 

Overall, I believe that this discussion on the limits of agent-based simulation models has 

shown that the methodology is indeed sound and can be valuably employed for the 

analysis of many economic issues. Moreover, this paper should have clarified some 

confounding differences in terminology between the computer science and the 

economic literature. In particular, metamodels have been interpreted as estimated 

reduced forms (input/output transformation functions) of the simulation models on 

artificial data, while calibration has been linked to the estimation of the structural 

parameters in the real data, without recurring to a reduced form of the model.  
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