

Working Paper no. 147

JAS-mine: A new platform for microsimulation and
agent-based modelling

Matteo Richiardi

Institute for New Economic Thinking at the Oxford Martin School

Nuffeld College, Oxford, UK
University of Torino and Collegio Carlo Alberto, Italy

Ross E Richardson
Institute for New Economic Thinking at the Oxford Martin School

University of Oxford

May, 2016

Laboratorio R. Revelli, Collegio Carlo Alberto Tel. +39 011 670.50.60 - Fax +39 011 670.50.61
Via Real Collegio, 30 - 10024 Moncalieri (TO) www.laboratoriorevelli.it - labor@laboratoriorevelli.it

http://www.laboratoriorevelli.it/
mailto:labor@laboratoriorevelli.it

JAS-mine: A new platform for microsimulation and

agent-based modelling

Matteo Richiardi

Institute for New Economic Thinking at the Oxford Martin School
Nuffield College, Oxford, UK

University of Torino and Collegio Carlo Alberto, Italy
matteo.richiardi@unito.it

Ross E Richardson

Institute for New Economic Thinking at the Oxford Martin School
University of Oxford

ross.richardson@maths.ox.ac.uk

May 13, 2016

Keywords: Simulation platform, Microsimulation, Agent-based, Software, Open-source.

Abstract

We introduce JAS-mine, a new Java-based computational platform that features tools to
support the development of large-scale, data-driven, discrete-event simulations. JAS-mine
is specifically designed for both agent-based and microsimulation modelling, anticipating a
convergence between the two approaches. An embedded relational database management
system provides tools for sophisticated input-output communications and data storage, al-
lowing the power of relational databases to be used within an object-oriented framework.
The JAS-mine philosophy encourages the separation of distinct concepts, objects and func-
tionalities of the simulation model, and advocates and supports transparency, flexibility and
modularity in model design. For instance, JAS-mine allows to store the list of regressors
and the estimated coefficients externally to code, making it easy to change the specification
of the regression models used in the simulation and achieving a complete parallelisation
between the tasks of the econometricians and those of the programmers. Moreover, tools
for uncertainty analysis and search over the parameter space are also built in.

1 Introduction

We introduce JAS-mine (Java Agent-based Simulation library - Modelling In a Networked En-
vironment), a new Java-based computational platform that features tools for discrete-event sim-
ulations encompassing both dynamic microsimulation (MS) and agent-based (AB) modelling.
With the aim to develop large-scale, data-driven models, JAS-mine brings real and simulated

1

data together by facilitating the integration of real world data into simulation models. Object-
relational mapping is used to embed a relational database management system, allowing the
power of relational databases to be used within an object-oriented Java framework.

JAS-mine provides specific simulation tools, along with a template for simulation architec-
ture design. In particular, JAS-mine is built around the idea that model development generally
involves the task of several people, who should work in parallel, possibly building on pre-existing
models and modules developed either by the same research team or by other teams. This is what
the ‘mine’ in JAS-mine stands for. The motivation for this modelling approach is recognising
that the real bottleneck in computational modelling comes not from processor power but from
the human element of designing and writing code. Hence, parallelisation in development, and
not just parallelisation in execution, becomes crucial.1 To minimise the time it takes for users to
create and develop software projects, transparency, flexibility and modularity are to be preferred
over brevity of the code and performance. This is achieved by keeping distinct concepts, objects
and functionalities separate as much as possible. To this end, data representation and man-
agement is automatically handled by the simulation engine, allowing the modeller to focus on
developing the behavioural algorithms and processes of the model. Moreover, JAS-mine supports
the idea that the user should be given full control over modelling issues, whereas the platform
should be responsible for technical issues.

The software follows the open-source paradigm, meaning that it is freely available for people
to use, review and help develop further, thus encouraging the refinement of the platform over
time. JAS-mine aims to use standard, open-source tools that are available in the open-source
community whenever possible.

This paper is not a tutorial; for such information we refer the user to the extensive docu-
mentation that can be found online, and a detailed description of an implementation of LIAM2’s
Demo07 model in JAS-mine (Richiardi and Richardson, 2016).2 Instead, this paper discusses
the philosophy of JAS-mine, the type of computational problems it is designed to address, its
architecture and features.

The paper is organised as follows: Section 2 provides a motivation for JAS-mine and the
issues it addresses; Section 3 outlines JAS-mine’s design philosophy; Section 4 describes impor-
tant specifications of the platform; Section 5 highlights some key features; Section 6 discusses
the possible modes of running JAS-mine; Section 7 presents performance characteristics of a
demonstration model and Section 8 offers our concluding remarks.

2 Why another platform?

JAS-mine is specifically designed to provide tools for both dynamic microsimulation and agent-
based modelling, anticipating the convergence of the two approaches (Richiardi, 2013).

Historically, AB models and microsimulations have followed different trajectories, with AB
models focusing more on theoretical issues and MS models being more data-oriented, often
featuring processes modelled as probabilistic regressions. In general, AB models are structural

1Note that a number of third-party solutions for parallelising Java code are readily available.
2See www.jas-mine.net.

2

models with a primary concern on understanding, while microsimulations are reduced-form mod-
els geared towards forecasting. As data becomes more readily available and technology becomes
increasingly sophisticated at handling such data, there has been an inevitable trend of conver-
gence between AB and MS modelling styles, with AB models evolving to be more empirical in
nature and MS models integrating interactions and feedback effects.

Agent-based and microsimulation models exhibit many of the same features and can be de-
scribed as belonging to the same class of discrete-event simulations. Indeed, from a mathematical
and computational perspective the two approaches are identical; they are recursive models in
which the number and individual states of the agents in the system are evolved by applying a
sequence of algorithms to an initial population. However, the differences in scope and perspec-
tive between MS and AB modelling has impinged on the structure of the computer models used
within each community.

AB models lead naturally to an explicit object-oriented representation, while MS models are
generally built around a database which is evolved forward in time. This has led to the devel-
opment of simulation toolkits which are specific to each field, such as NetLogo (Wilensky, 1999)
, RePast (North et al., 2013) and MASON (Luke et al., 2005) for AB modelling, and Modgen
(Statistics Canada, 2009), LIAM2 (De Menten et al., 2014) and JAMSIM (Mannion et al., 2012)
for MS modelling to name just a few.

In particular, existing agent-based tools such as NetLogo and RePast are not designed for
large-scale, data-driven modelling. Input and output (I/O) communications play only a sec-
ondary role, and the analysis and visualization of model outcomes are often mixed up with
model structure. This hard coding and lack of a clear modular structure makes it difficult to
perform design of experiments (DOE) on the model, hindering their use in large-scale, data-
driven projects where modularity and efficiency are vital aspects in understanding the behaviour
of the model.

On the other hand, existing microsimulation platforms such as LIAM2 and Modgen are de-
signed with microsimulation structures in mind. This generally imposes a programming style
with a very strict, ad-hoc grammar and syntax. Not only can such demands end up being too
much of a model design straight-jacket – especially for AB modelling – but they also represent a
considerable investment for the user, who is required to learn an idiosyncratic language just to
use the specific MS toolkit.

Evolving out of the JAS project (Sonnessa, 2004) that dates back to 2004, JAS-mine was
created to make the development of ‘hybrid’ AB-MS models easier, and to allow researchers to
use the same tools for both approaches, to exploit economies of scale in learning and coding.
JAS-mine was designed specifically to give the modeller the tools and flexibility needed to build
large-scale, data-driven models. It gives the user full control over modelling issues, whilst taking
care of the technical issues behind the scenes. It is written in the widely used Java programming
language and should thus be readily accessible to a large population of programmers. Its unique
combination of features distinguish it from all of the aforementioned platforms.

3

3 The JAS-mine Philosophy

Above all, JAS-mine stresses transparency, flexibility and modularity of the code, even (when
there is a conflict) at the expense of brevity and performance.3 The goal is to facilitate the model
design and coding phase, minimising the time it takes users to create and develop large scale,
data-driven discrete-event simulation projects.

JAS-mine’s general principles maintain that users should be given full control over modelling
issues; there should be no constraints on model specifications and no behavioural choices hidden
in higher level functions, though the platform should assist in the implementation. In addition,
the platform should take responsibility for technical issues such as setting parameters, manag-
ing the simulation schedule and I/O communications, the collecting of statistics, inspection and
monitoring, and debugging.

Moreover, things that are conceptually distinct should be kept separate whenever possible,
as discussed in detail in Section 4. For example, JAS-mine advocates the separation of the
input data and parameters from the model code. This enables the parameters, and even the
econometric and statistical specifications of regression processes in the model, to be changed
without touching the code-base. This allows for better division of labour across time and space;
users can collaborate and separately develop their own modules to be integrated into the overall
project. This separation of distinct components encourages modularity, clarity and transparency.

JAS-mine favours the use of Object-Oriented Programming (OOP) for its natural ability to
represent the agents (individuals, households, firms, etc.) within AB and MS models. This pro-
gramming paradigm further encourages well-structured code that is divided into packages and
class hierarchies, supporting powerful computational modelling concepts such as encapsulation
and inheritance (Luna and Stefansson, 2000; Gilbert and Terna, 2000).

JAS-mine employs the most widely used and well-supported computing language available
at this time, Java. Figure 1 from the ‘PopularitY of Programming Language (PYPL) Index’
illustrates the popularity of the most popular programming languages since 2004, quantifying
the proportion of searches on Google for tutorials of specific programming languages. Across
the whole period of time analysed, the Java programming language has maintained its lead as
the most popular language with around 25% of all searches and, at the time of writing in March
2016, has double the market share compared to the next most popular language, Python.

This popularity enables the JAS-mine platform to benefit from the enormous contribution of
human hours that has gone into developing a vast array of freely available, state-of-the-art Java
tools. Furthermore, Java performs well in comparison with other widely used languages such as
C (and C++) and Python, over a number of standard benchmarks, see Figure 2.

A user who develops an ability to code in Java in order to use, or even through using, the
JAS-mine platform will obtain a widely applicable skill in high demand; such a skill is a valu-
able addition to any computational modeller’s skill-set and will stand him or her in good stead
regardless of whether their career is within academia or industry.

3When computation time becomes an issue, specific features of JAS-mine can be switched off, to revert to
pure Java performance (see Sections 6 and 7).

4

Figure 1: The most popular languages in the PYPL PopularitY of Programming Lan-
guage Index, created by analyzing how often language tutorials are searched on Google, from
http://pypl.github.io/PYPL.html. Java has consistently been the most popular programming language
over recent history and, at the time of writing in March 2016, has 24.1% market share, double the
amount of the next most popular language, Python.

Figure 2: Smaller is better: the benchmark times for operations implemented in a num-
ber of programming languages relative to C, whose performance time is set to 1.0. From
http://julialang.org/benchmarks/.

5

JAS-mine aims to support the model building process by using more transparent, better or-
ganized and documented functions. Being an open-source project, users have access to all the
JAS-mine source code should they wish to inspect and even refine it.4 This helps to avoid the
‘black box’ nature that some modelling platforms suffer from, whilst encouraging further devel-
opment of the platform. Moreover, JAS-mine inherits the object-oriented programming structure
of packages and classes from Java, further facilitating the organization of code in a transparent,
uncluttered manner. In addition, the JAS-mine website contains numerous tutorials, tips, demo
models and the application programming interface (API), so that the user can find the necessary
information to make the most of the JAS-mine tools.5

4 JAS-mine Specifications

JAS-mine’s design principles encourage adhering to a strict modelling discipline that maintains
the separation between things that are conceptually separate. A clear distinction is made between
objects with a modelling content, which specify the structure of the simulation, and objects which
perform useful but auxiliary tasks, from enumerating categorical variables to building graphical
widgets, from creating filters for the collection of agents to computing aggregate statistics to be
saved in the output database. This motivates the discussion in Subsections 4.1 and 4.2.

4.1 The Structure of a JAS-mine Project

From a modelling perspective, JAS-mine extends the Model-Observer paradigm introduced by
the Swarm experience (Minar et al., 1996) and introduces an intermediate layer in simulation
modelling, the Collector. These layers are implemented within a JAS-mine project by managers,
who organise and manage agents within the simulation.

The Model manager deals mainly with specification issues, creating objects such as agents
within the simulation, relations between objects and the environment of the simulation, and
defines the model’s schedule of events. In parallel, the Observer manager builds and updates
graphical widgets to enable the user to inspect the state of the simulation in real time and mon-
itor some predefined outcome variables as the simulation unfolds.

The additional Collector manager takes care of data persistence. It also builds the data
structures and routines needed to collect data, and computes statistics required by the simula-
tion objects and for analysis of the simulation run after completion. Its schedule specifies the
frequency for sampling the agents, updating the aggregate statistics, and saving data into the
output database.

This three-layer methodological protocol allows for extensive re-use of code and facilitates
model building, debugging and communication. Additionally, we highlight that there can be
more than one type of each manager; for example two Model managers can be developed sepa-
rately and easily assimilated into a JAS-mine project, as the JAS-mine simulation engine handles
the aggregation of the two Models’ schedules into the simulation engine’s event queue.

4The source code is available on GitHub at https://github.com/jasmineRepo/JAS-mine-core and
https://github.com/jasmineRepo/JAS-mine-gui.

5See www.jas-mine.net/home/documentation.

6

For a detailed description of a JAS-mine project that demonstrates the separation of tasks
into the Model-Collector-Observer structure, we refer the reader to Richiardi and Richardson
(2016), which presents the porting of LIAM2’s Demo07 demographic microsimulation model into
JAS-mine.

4.2 Separation of Data and Code

JAS-mine favours the separation of data representation and management – which is automati-
cally handled by the simulation engine – from the implementation of processes and behavioral
algorithms, which should be the primary concern of the modeller.

In practicality, JAS-mine advocates the partitioning of data from the code-base, with all
parameters and input tables stored either in Microsoft Excel files (.xls or .xlsx format) or in an
input database. Although not a requirement, JAS-mine recommends that the only hard-coded
parameters in the code-base are so-called ‘GUI parameters’. These GUI parameters are ones that
the user wishes to directly set and possibly change during runtime; they are annotated as such
(using the @GUIparameter Java annotation) to enable JAS-mine to recognise and display them
in the graphical user interface (GUI). This results in quicker, more robust and more transparent
model building, simplifying modular development and subsequent extension and modification.

For example, this separation allows the rapid iteration of model specification, as it is possible
in JAS-mine to change not only the input data and parameters easily, but also to change a
model’s econometric or statistical specifications without changing any of the code: JAS-mine’s
regression package provides tools to import and inspect data from Microsoft Excel files, such
that only the enumerated regression covariates and corresponding coefficients are used in the
regression models. Thus, by removing a regression covariate and its corresponding coefficient
from the Excel file, the JAS-mine regression object automatically removes this covariate from
any related calculations, without the need to change any line of code in the code-base.

This separation of code and data greatly facilitates the evaluation of different econometric
specifications and scenario analysis, in addition to the exploration of the parameter space. More-
over, this modular design allows for easier collaboration and better division of labour across time
and space; an econometrician in one part of the world can develop the econometric (regression)
model specifications, whilst a programmer in another part of the world writes the simulation
code-base of the JAS-mine project in parallel.

4.3 Input - Output Communications

A key feature of JAS-mine is its integration of input and output (I/O) communication tools within
the modelling platform. By structuring the platform around a relational database management
system (RDBMS), JAS-mine provides built-in utilities for communicating with underlying rela-
tional databases. These tools enable the user to import data from an input relational database
and export data to an output relational database by writing just a single line of code for each
operation.

Relational databases are an optimal way of storing vast amounts of data, potentially featuring
complex inter-relationships. The statistical analysis of simulation output is possibly intensive in

7

computing time, so time-constraints may limit such analysis in real-time, especially in large-scale
applications. A common solution is to limit such analysis to a small subset of output variables,
however this requires identifying the output of interest before the simulation is executed. If it
is then decided that additional computations are necessary to better understand how the model
behaves, the simulation has to be run again; the bigger the model, the more impractical this
solution becomes. Relational databases make it feasible to keep track of a much larger set of
variables and the relationships between agents in complicated simulation models, facilitating
post-mortem analysis.

The benefits of having the simulation output stored as a relational database are larger the
more object types there are in the model. For example, in an AB model where workers apply to
vacancies issued by firms, there are four object types: workers, applications, vacancies, and firms,
with each worker possibly applying to more than one vacancy, each vacancy possibly receiving
more than one application, and each firm possibly posting more than one vacancy.6 Moreover,
attributes of each agent type can also be classified: for instance, all vacancies in the same indus-
try/sector/area might share the same base wage, hours of work, paid holidays etc., as bargained
between unions and firms. Rather than duplicating this information for each posted vacancy, we
might store these characteristics in a separate table, to which each vacancy refers. A relational
database keeps track of all the relationships between tables, as identified by primary and foreign
keys. An alternative to using a relational database is to probe individual objects and save them
in separate, unconnected tables, and indeed JAS-mine allows the user to follow this route and
save the simulation outcome as separate text files (see below). Then, the relationship between
the different tables can be inferred by looking at columns with the same name: for instance,
the existence of a column named ‘worker id’ in the WORKER, APPLICATION and VACANCY
tables can be interpreted as workers applying to vacancies, and vacancies selecting one job appli-
cant among all the received applications. However, there is nothing that tells the user that those
different columns in different tables actually contain the same information: this knowledge must
come from knowledge of the model structure. With the idea that the statistician analysing the
model outcome can be different from the programmer coding the model, who may be different
from the researcher specifying the model, storing all the relationships between attributes and
agent types might be valuable.

The JAS-mine GUI contains a database explorer that links to a database console, allowing
the user to inspect the input and output databases through Structured Query Language (SQL)
style commands.7 As an example, Figure 3 depicts the information schema of the embedded
database of a JAS-mine project.8

Once the simulation has ended, the output database that JAS-mine has created can be loaded
into the user’s favourite statistical software (such as R, STATA, SAS, SPSS, etc.). This enables
the user to employ all the powerful functionality of these programs to analyse the results of the
simulations.

Each JAS-mine project can work with two databases:- an input database and an output
database. The input database can contain sets of model parameters and coefficients, and an
initial population to be evolved forward in time by the simulation model. The output database
records the changes in the simulated population, either by sampling it at regular intervals in

6See the demo model at www.jas-mine.net/demo/applications.
7See http://www.jas-mine.net/home/documentation/cookbook/queries for more details.
8JAS-mine uses the Hibernate H2 database, see Subsection 4.3.2.

8

Figure 3: A screenshot from the Hibernate H2 console, with the information schema of a microsimu-
lation model of labour force participation. There are two main tables: one containing panel data on
individual agents (PERSON), and one containing time series aggregate data (STATISTICS). An addi-
tional table (JASMINE EXPERIMENT PARAMETER) contains the value of the model parameters (as
set by the user through the GUI), while the JASMINE EXPERIMENT table contains information about
the specific run (run id and time stamp).

time or by recording individual events that happen to individual agents possibly at irregular
times. The output archives the state of the system, including the initial period, and contains
a copy of the parameters and coefficients used in the simulation, so as to avoid indeterminacies
regarding how the data were produced. Thus, JAS-mine produces a copy of all the files in the
input directory to store in the output directory, alongside the output database.

4.3.1 Relational databases in JAS-mine

As we have seen, relational database structures are useful when wishing to store data from models
with lots of inter-connected classes of agents with a variety of relationships, such as one-to-one,
many-to-one or many-to-many connections. This is the case, for example, in simulations with
complex many-to-many types of relationships.

Relational databases in JAS-mine contain a separate table for each entity (agent type). When
constructing and storing data in an output database, JAS-mine produces a separate table for
each Java class in the project that has been labelled with an @Entity Java annotation – we shall
call such Java classes ‘Entity Classes’. Each table in the database contains data from instances
(the agents or ‘objects’ in Object-Oriented parlance) of the corresponding Entity Classes. A
specific row in a table corresponds to an individual agent at a specific time in the simulation and
is identified by a key containing numbers representing the agent’s identity, the simulation time
and simulation run (useful for identifying a run within JAS-mine’s multi-run execution mode, see
Section 6). Such a key corresponds to JAS-mine’s PanelEntityKey data type (annotated with
@Id), which must be declared in each Entity Class and be uniquely defined for each instance

9

(agent) of the Entity Classes. Standard SQL queries can then be used to find a specific agent at
a specific simulation time and simulation run in the database.

The output database records every data field that is defined in an Entity Class unless the field
is annotated with the @Transient label. Basic data types such as individual numbers, strings,
booleans and enumerated types are easily represented in the database, however only the refer-
ence field pointing to a more complicated Java Object would be stored for user-defined data types.

This introduces our discussion to the nature of relationships between agent types. It is
possible for agents to have one-to-one, many-to-one and many-to-many relationships. In the
labour market example of the previous section, the relationship between workers and vacancies
is many-to-many, meaning that a worker can apply to many vacancies, and a vacancy can receive
applications from many workers. Persisting a many-to-many relationship is complicated because
the list of vacancies each worker has applied to is a priori of indeterminate length, as is the list
of workers that have applied to any single vacancy. Persistence is then achieved by introducing
an Application class that contains a pointer to the vacancy and the worker. Each application
refers to one and only one link between a vacancy and a worker, and each link consists in one
and only one application. The data that are saved in the database during the simulation refer to
three different entities (workers, vacancies and applications) and are characterized by two differ-
ent data structure (panel vs. population) however, thanks to the JAS-mine persistence engine,
the appropriate keys are automatically added. This results in linked tables that can be easily
manipulated in the subsequent analysis.

4.3.2 Embedded Relational Database Management System via Object-Relational
Mapping

A natural way of coding systems of interacting agents, possibly belonging to different entities
featuring hierarchical levels is through object-oriented programming (OOP). Indeed, this is the
software paradigm best suited to represent and manipulate the sort of input data commonly
found in AB and MS models such as population data. On the other hand, large-scale input and
output data - especially in complex projects - are best stored in a relational database. Indeed,
the traditional perspective of microsimulation modelling is that simulations are data structures
which evolve through time according to predefined rules and parameters (see Figure 4). Database
relational modelling however, is less intuitive than OOP and requires a specific language such as
SQL to retrieve and modify the data.

JAS-mine overcomes the issues of interaction between the simulation and the I/O data by
using an embedded RDBMS. An embedded RDBMS is a database management system which
is tightly integrated with an application software that requires access to stored data, such that
the database system is ‘hidden’ from the application’s end-user and requires little or no on-
going maintenance. By default, JAS-mine uses the Hibernate (H2) database format, however
other databases that support embedding can be used, such as Microsoft Access, Hypersonic SQL,
Apache Derby, etc.9 To change the database type, it is sufficient to reconfigure the persistence.xml
file, which otherwise does not need to be modified. Also, by pointing the file persistence.xml to
a database server it is possible to use the database in server mode, through a network interface.

9See www.hibernate.org.

10

Figure 4: Simulations can be viewed as data structures which evolve through time according to prede-
fined rules and parameters.

Figure 5: In JAS-mine the interaction between the simulation and the (input and output) data is
achieved using Object-Relational Mapping (ORM), a programming approach that facilitates the inte-
gration of object-oriented software systems with relational databases. An ORM product (JAS-mine
uses Hibernate) constructs an object-oriented interface to provide services on data persistence, while ab-
stracting from the implementation characteristics of the specific relational database management system
used.

Embedding is achieved using Object-Relational Mapping (ORM), a programming technique
for converting data between incompatible type systems in OOP languages, see Figure 5.10 ORM
is used in JAS-mine to facilitate the integration of the object-oriented software system with a
relational database (Keller et al., 1993). An ORM product (JAS-mine uses Hibernate) constructs
an object-oriented interface to provide services on data persistence, while abstracting at the same
time from the implementation characteristics of the specific RDBMS used.

Thus, all of the complex operations required to integrate the relational database management
system into JAS-mine takes place behind the scenes. The ORM masks the complex activities
involved in the creation, extraction, update and deletion of data behind simple commands, dras-
tically reducing the amount of code required and removing a considerable burden for the model
developer. These activities would have previously taken up a large amount of the time required
to write, test and maintain simulation models.

On the down-side, choosing an ORM paradigm introduces a software layer that impacts on

10See http://www.jas-mine.net/home/documentation/focus/object-relational-mapping for more details.

11

performance, an aspect that is relevant to data-intensive applications like simulations. Translat-
ing the entity-relational model that is typical of a database into an object-based model requires
additional activities that may slow down data upload, reading and exporting. Given the con-
tinuous increase in the speed and power of modern computers, we opt for a lean architectural
structure even at the cost of slowing the simulation engine down. JAS-mine, however, does
provide an alternative mechanism to export output data if the user wishes to increase the speed
of the simulation. Instead of storing data in the output relational database, the user can choose
to export data into comma-separated values files (csv), with a different csv file for each class of
object exported. This can increase the speed of output substantially and is achieved simply by
changing the value of two boolean arguments, either through the JAS-mine GUI or directly in
the Collector class(es). We explore the impact on the execution speed, of exporting data to the
database and csv files in Section 7.

5 Key JAS-mine Features

We describe a number of useful features that JAS-mine provides to the model builder.

5.1 Simulation Time

JAS-mine allows great flexibility with regards to the time that an event can be scheduled.
Whereas some microsimulation platforms such as LIAM2 only allow events to be scheduled
at regular time-steps labelled by integers (‘discrete-time’), time in JAS-mine is a continuous
variable. This means that JAS-mine can handle complicated sporadic events that are scheduled
at irregular time intervals, possibly sampled from a continuous probability distribution such as
the exponential distribution to model inter-arrival times of events corresponding to Poisson pro-
cesses. This flexibility is indeed required to implement the AB-MS hybrid model described in
Section 7.

In addition, events that are scheduled for the same time can have their relative order speci-
fied using JAS-mine’s scheduling methods11; this may be necessary to ensure strict causality in
a simulation model. Dynamic scheduling is also possible within JAS-mine; events need not all
be specified at the start of the simulation but can also be scheduled during runtime, for example
by the agents scheduling events that they will perform in the future.

5.2 Statistics

‘CrossSection’ objects representing a cross-section of a sub-population of agents in a simulation
can be constructed using JAS-mine’s statistics package; the overall population can be refined to
a sub-population using filters to separate out agents that don’t exhibit the required properties,
such as a specific age or gender. Time-series statistics can be calculated on the cross-sectional
objects to obtain longitudinal statistics, and JAS-mine simplifies the task of updating the statis-
tics at each time-step of the simulation.

11See www.jas-mine.net/home/documentation/cookbook/the-model-and-the-schedule.

12

For examples of how JAS-mine’s statistical tools can be used, we refer the reader to both
the documentation on the JAS-mine website and implementations in JAS-mine’s demonstration
projects.12,13

5.3 Regressions and Uncertainty Analysis

Sophisticated regression libraries allow a complete separation of regression specifications from the
code. There is currently support for linear regressions, binary logistic, binary probit, multinomial
logistic and multinomial probit regressions. The structure of the regressions can be delegated
to the data stored in Microsoft Excel files (.xls and .xlsx), which contains both the name of
regression covariates and corresponding coefficients for each covariate. During the simulation,
the JAS-mine simulation engine will search for a particular definition of a regression covariate in
the code and calculate its quantity for each agent that the regression applies to. The separation
of regression specifications from the code mean that a regression covariate can be removed from
the model simply by removing the covariate’s corresponding row in the Excel spreadsheet. Fur-
thermore, regression coefficients can be updated merely by changing the values within the Excel
spreadsheet.

As utilised in Richiardi et al. (2016a,b), regression utility tools are available to facilitate the
analysis of uncertainty in model parameters, pointing to the imprecision of the estimates and/or
externally provided parameters (Bilcke et al., 2011).14 One approach to deal with this uncer-
tainty (Creedy et al., 2007) prescribes to bootstrap the regression coefficients of the estimated
equations from their estimated distribution (e.g. multivariate normal in the case of multinomial
probit regressions) with mean equal to the point estimate and covariance matrix equal to the
estimated covariance. Bootstrapping needs to be performed only once, at the beginning of each
simulation run: the entire simulation is then performed with the bootstrapped values of the
coefficients. JAS-mine allows for a simple implementation of this ‘brute-force’ approach, by pro-
viding a bootstrapping method in the Regression library to be used within a multi-run execution
mode.15 The simulation is run many times, each using a different set of regression coefficients.
The result is a distribution of model outcomes, around the central projections obtained with the
estimated coefficients, as can be seen in Figure 6, taken from Richiardi et al. (2016a).

5.4 Alignment

Alignment is a technique widely used in (dynamic) microsimulation modelling to ensure that the
simulated totals conform to some exogenously specified targets, or aggregate projections (Baek-
gaard, 2002; Klevmarken, 2002; Li and O’Donoghue, 2014).

Alignment is a way to incorporate additional information which is not available in the es-
timation data. The underlying assumption is that the AB or MS model is a poor(er) model
of the aggregate, but a good model of individual heterogeneity: by forcing the microsimulation
outcomes to match the targets in a way that is as least distortive as possible, the microsimulation
model is left with the task of distributing the totals in the population. In general, the above

12See www.jas-mine.net/home/documentation/tutorials/how-to-use-the-jasmine-statistical-package.
13See www.jas-mine.net/demo, with source code found at https://github.com/jasmineRepo.
14See www.jas-mine.net/home/documentation/focus/uncertainty-analysis.
15See Subsection 6 for discussion of JAS-mine’s multi-run capabilities.

13

Figure 6: Quantifying forecast error due to parameter uncertainty, using JAS-mine’s regression utility
tools to bootstrap regression coefficients during a multi-run execution of a simulation over 1000 runs. The
chart was produced using kernel density estimation from analysis of the simulation’s output database
performed by the statistical software program ‘R’.

assumption is very dangerous and unwarranted, and alignment should be looked at with great
suspicion.

A number of alignment algorithms are available from the JAS-mine libraries.16 These include
Resampling Alignment (Leombruni and Richiardi, 2006; Richiardi and Poggi, 2014), Sidewalk
Alignment, Multiplicative Scaling Alignment, Sorting By the Difference between predicted prob-
ability and a random number (SBD), and Sorting By the Difference between logistic adjusted
predicted probability and a random number (SBDL). Descriptions of these alignment algorithms
can be found in Li and O’Donoghue (2014).17,18

5.5 Matching

JAS-mine has specific tools contained within the Matching package, to perform matching be-
tween two collections of agents based on some specific criterion. The matching methods are
called from outside the agents to be matched, for instance by the Model class. The simplest
algorithm is a one-way matching procedure implemented in JAS-mine’s SimpleMatching class,
where the agents in one collection (e.g. females) choose to match with the agents in the other
collection (e.g. males), who remain passive with regards to the matching process.

16See www.jas-mine.net/home/documentation/focus/alignment.
17Resampling Alignment is used in the Labour Force Participation demonstration model (Richiardi

et al., 2016a,b), see www.jas-mine.net/demo and in particular the implementation in the source code at
https://github.com/jasmineRepo/LabourForceParticipation.

18A discussion of how to implement SBD Alignment can be found in Richiardi and Richardson (2016) and at
www.jas-mine.net/demo/demo07/personsmodel.

14

Matching is used to simulate the marriage between females and males within the population
in the Demo07 demonstration model (Richiardi and Richardson, 2016).19 More details and dis-
cussion can be found on the JAS-mine website.20

5.6 Extensions & Third-Party Solutions

The fact that JAS-mine projects are written in the Java programming language means that there
are many state-of-the-art third-party solutions freely available for the modeller to use, not only
within the code itself but also during the development of the code. For example, the Eclipse
Integrated Development Environment (IDE) is available to use with JAS-mine; it features a wide
variety of built-in development tools such as a powerful debugger, refactoring tools and a Git
version control system.21 Furthermore, a vast collection of additional tools are available from
third-party providers via the Eclipse Marketplace, such as a software profiler that can be used
to discover bottlenecks – the places in the code that take the longest time to execute – in order
to aid the developer in making code run faster and more efficiently.

Moreover, a JAS-mine Plugin for Eclipse IDE exists that helps the user set up a standard JAS-
mine project structure automatically within Eclipse. This standard JAS-mine project features
the recommended package structure and class names, and contains templates of the necessary
classes with the required code in order to make the project ready for immediate execution. The
project dependencies are handled by the Apache Maven Project, which automatically downloads
the correct versions of files required by the project in order to run.22 This enables the user to be
instantly productive, as he or she can concentrate on writing the fundamental code to specify the
model processes and agents’ behaviour, rather than worrying about how to set-up the JAS-mine
project.

6 Execution Modes

JAS-mine supports three different types of execution mode:- interactive mode, batch mode and
multi-run mode.

The most common mode for prototyping a JAS-mine project, developing an intuition about
how it works and demonstrating it to an audience is the interactive mode. This features a
graphical user interface, where model parameters can be set and updated by the user during a
simulation run, and charts can be displayed in order to allow for real-time inspection of a number
of the model’s output quantities. There is a rich graphical library allowing extensive visualiza-
tion options in JAS-mine. As can be seen in Figure 7, graphics include time series plots and
geographic maps. This screenshot of the JAS-mine GUI is from the Extended Schelling model,
which combines the well known segregation model by Thomas Schelling (Schelling, 1969) that is
illustrative of the AB approach, with demographic features of birth and death processes that are
typical of dynamic microsimulations. The model can be downloaded from the JAS-mine web-
site.23 The interactive mode is launched by default when executing the Start class of a standard

19See http://www.jas-mine.net/demo/demo07/personsmodel for implementation details.
20See http://www.jas-mine.net/home/documentation/cookbook/matching.
21See https://eclipse.org.
22See https://maven.apache.org.
23See http://www.jas-mine.net/demo/extended-schelling.

15

Figure 7: Interactive Mode: screenshot of the JAS-mine graphical user interface showing output from
the Extended Schelling demonstration model, available at www.jas-mine.net/demo/extended-schelling.

JAS-mine project (as created using the JAS-mine Plugin for Eclipse IDE tool that was discussed
in Subsection 5.6).

On the other hand, if the user desires to run a simulation model in the shortest possible time,
JAS-mine can run in batch mode where the GUI and other unnecessary parts of the project can
be switched off (e.g. the project’s Observer class) in order to optimise speed. This is possible
due to the modular nature of JAS-mine code, embodying the JAS-mine philosophy of keeping
conceptually distinct components of the project separate. The project can be run on High Per-
formance Computing (HPC) clusters, offering the potential to run simulations that require much
greater memory and processing power. In addition, Java has tools for parallelisation, concur-
rency and multithreading, enabling simulations to run across multiple cores if the user so desires.

Finally, the multi-run mode can be executed using the project’s MultiRun class (as created
using the JAS-mine Plugin for Eclipse IDE tool that was discussed in Subsection 5.6), that
calls the JAS-mine simulation engine’s multi-run tools to handle the sequential execution of
simulations. This may be utilised to facilitate ‘design of experiments’ (DOE) analysis and the
optimisation of simulation output quantities.24 In addition, parameter uncertainty analysis can

24See www.jas-mine.net/home/documentation/tutorials/run-a-simulation-many-times.

16

be undertaken using the multi-run mode and JAS-mine’s regression utility tools to bootstrap
regression coefficients (see discussion in Section 5.3). The user should note that JAS-mine’s
input/output communication handling in multi-run mode is such that all data is exported into a
single output relational database, indexed by the simulation time and run number. This allows
the user to easily analyse the variation of output across simulation runs (and possibly over a
variety of parameter domains) using their favourite statistical software (e.g. R, STATA, SPSS,
SAS, etc.).

7 Applications and Performance

We demonstrate the performance of JAS-mine by implementing a rich AB model, and assess
how the time to execute the model is affected by the persistence of data to the output database
or csv files.

The Theoretical Health Inequality Model (THIM) was developed by Wolfson et al. (Wolfson
et al., 2016) to understand why cities in the US and UK with higher income inequality have lower
health-adjusted life expectancy, while Australian, Canada and Swedish cities do not. The model
is motivated by the theory that low income households living near high income households tend
to benefit from better infrastructure and amenities such as hospitals, which may be denied to
them if living in a city partitioned into rich and poor neighbourhoods (the “gates and ghettos”
case). The model specifically tries to demonstrate this relationship by varying the heterogeneity
within each neighbourhood and across neighbourhoods.

THIM is a computationally heavy model with lots of interactions, however agents also un-
dergo demographic transitions modelled by stochastic processes represented by regressions, so
it is ideal in representing a hybrid AB and MS model. The model recreates stylized individual-
level relationships among health status, education, income, mortality rates and neighbourhood
mobility. There are multiple levels featured in THIM, from individuals and parent-child dyads,
to neighbourhoods and cities. The interactions between the states of individuals and across a
hierarchy of aggregation levels are represented in Figure 8. These levels allow to capture the
roles of parental transmission of socio-economic status and health advantage to children, the
impact of average neighbourhood income on school, and overall city-wide patterns of inequality
and mortality.

THIM features a mix of regular events; each agent updates its status once a year on its birth-
day, and the system-wide statistics against which an agent measures itself are updated at the
start of a new year. There are also irregular events and dynamic scheduling; the time at which
each agent gives birth and dies is drawn probabilistically from continuous distributions during
the simulation. This means that we cannot know a priori the timing of events at the start of the
simulation, and therefore cannot use JAS-mine’s scheduling tools to reduce the number of events
that need to be scheduled by scheduling events to apply to the whole population of agents, as
we did in the Demo07 demonstration model (Richiardi and Richardson, 2016). In this case, the
model’s event schedule scales with the number of agents and not just the number of processes.
Simulating a country on a one-to-one scale would mean potentially having to schedule hundreds
of millions of events during run-time.

The priority queue behind JAS-mine’s event schedule keeps the access and insertion of events

17

Figure 8: The interaction between states (attributes) of individual agents and across a hierarchy of
aggregation levels in the Theoretical Health Inequality Model. For each agent, E is the education level,
Y is the income level, H is the health index, D is the mortality probability and L is the geographic
location. Source: Wolfson et al. (2016).

in the event schedule computationally efficient, with access to the earliest event achieved in con-
stant time, whilst insertion is performed in logarithmic time O(log N) in the worst case. This
means that a model simulating the United States on a one-to-one scale containing 300 million
agents would only need to check up to around thirty events of the schedule to find the correct
place to insert a new event.25

We performed the simulations using the University of Oxford’s Advanced Research Com-
puting cluster ARCUS (Phase B), which features Intel E5-2640v3 Haswell processors and up to
128GB of random access memory.26 In order to assess the impact that the persistence of data
has on performance in JAS-mine, simulations for a wide range of population sizes were run for
three different data exporting modes:- persistence to the database, the export of data to csv
files, and finally the benchmark setting with no recording of data. The data that is exported
by the simulation is the whole state of the population at the start of every simulated ‘year’ for
five-hundred years.

The time taken for the simulations to complete under the different data export modes can be
seen in Figure 9, for population sizes doubling from 6250 agents up to 6.4 million agents (the
result for 6.4 million agents with data exported to the database did not complete within a 10
day time-frame). Note that the time taken for the simulations to complete doesn’t just depend
on the platform (which will be as fast as implementing the model in pure Java), but also on
the structure of the model, how it is implemented and even the computer architecture used.27

25This assumes the priority queue implementation uses a binary heap structure.
26See www.arc.ox.ac.uk/content/services.
27We find that simulations persisting data to an output database complete in a shorter time on a personal

18

Figure 9: The time taken (in minutes) for simulations of THIM implemented in JAS-mine to complete
for a variety of population sizes. The three lines correspond to different data export options, with
‘Database’ referring to persistence to the output database, ‘CSV’ referring to the export of data to
separate comma-separated values files, and ‘No Output’ referring to the benchmark case where there
is no data exported. Simulations were executed on the ARCUS-B cluster of the University of Oxford’s
Advanced Research Computing facility.

Indeed, how the time scales with population size – in this case, the time taken to complete
appears to scale approximately as a power law over the range of investigation – is a property of
the structure of the model, influenced by the nature of interaction between agents. The figure,
which shows a convergence between the times taken for simulations with no output and data
exported to csv files as the population size increases, demonstrates that the time taken for data
to be exported represents a diminishing proportion of the overall simulation time.

It is important to assess the difference between the modes of data export, with respect to
the benchmark of no data output. The export mode persisting data to the output database il-
lustrates the additional overhead involved in running simulations with the underlying machinery
of object-relational mapping (ORM). Indeed, the figure shows that the additional time costs of
exporting the output to csv files is negligible when compared to the additional time it takes to
persist the output of the THIM to the relational database. We leave it to the user to decide the
best data export option for his or her needs, which will depend on the nature and scale of the
model they develop, along with how the user intends to perform data analysis on the simulation
output (i.e. whether the benefits of storing data in a relational database justify the additional
time costs).

For completeness, it should also be noted that the relational database files are about 20%

computer than on ARCUS-B; running on a personal computer, the time to complete for database persistence is
around six times longer than exporting to csv files, versus eighteen times longer when running on ARCUS-B. The
reverse, however, is true for exporting to csv files and not exporting any data, which complete in a shorter time
on ARCUS-B. The main reason we choose to run simulations on a high performance computer is to assess how
the model scales with larger population sizes that, due to the large memory and storage space requirements, are
not possible to execute on a typical personal computer at the time of writing. Note that the model has not been
redesigned to take advantage of the parallelization possibilities on ARCUS-B, which would further increase the
speed of execution.

19

larger than the csv files, with files ranging from around 400MB for THIM simulations with an
initial population size of 6250, up to 400GB for an initial population size of 6.4 million agents.

8 Conclusions

In this paper, we have introduced the JAS-mine platform, a Java-based toolkit for discrete-event
simulations specifically designed to aid development of agent-based and dynamic microsimula-
tion models, anticipating a convergence between the two fields. As discussed in Richiardi and
Sonnessa (2013), the platform can be assessed both with respect to what it is, and what it is
not. First, JAS-mine is not a tool to speed up simulation execution – its execution speed will
be the speed of Java; rather, its goal is to speed up model development, facilitate model doc-
umentation, and foster model testing and sharing. The rationale behind this choice lies in the
observation that computer power is always increasing, while developers’ time is not. Also, large-
scale simulation projects are generally beyond the reach of a single researcher. Even when they
remain under the control of a restricted group of people, simulation projects generally require
a prolonged effort, often on a stop-start basis. The possibility of building on work done in the
past by the same authors or by other researchers is crucial. Simulation modelling needs coopera-
tive development, and the choice of an entirely open-source tool should be evaluated in this light.

In the trade-off between efficiency and transparency, we deliberately opt for the latter. How-
ever, JAS-mine does not force the user to adopt predefined solutions to the problems faced in
simulation modelling. By offering a set of libraries that extend the capability of the standard
Java classes, JAS-mine leaves entirely open the possibility of using other libraries and tools,
either as an alternative or on top of the JAS-mine toolkit. This is similar to other platforms
such as MASON and RePast, which are also Java-based and open-source. However, these simu-
lation toolkits leave input/output communication somewhat in the backyard, and are therefore
ill-suited for microsimulation modelling.

From a modelling perspective, the main value added by JAS-mine is the inclusion of spe-
cific libraries for regression modelling, alignment and uncertainty analysis. From a computer
science perspective, the main value added lies in the integration of an object-oriented simulation
platform with a relational database, through the use of object-relational mapping. Clearly, our
approach is an overkill for small-scale agent-based models. Toy models designed to provide in-
sight into the relevant mechanisms of social interaction do not generally need relational archives
for input and output. However, the use of large-scale agent-based macro models is becoming
increasingly popular as an alternative to the standard Dynamic Stochastic General Equilibrium
(DSGE) approach in macroeconomics. At the same time, our methodological proposal of strictly
separating (i) model specification (the agents and their environment), (ii) micro and macro al-
gorithms (the econometric formulas used for predicting outcomes at an individual level and the
specific methods used for alignment and matching), (iii) data collection and analysis, could also
be useful for dynamic microsimulation modelling. This separation is possible thanks to a strict
adherence to an object-oriented approach and a detailed package structure. The prices to pay,
for instance with respect to LIAM2 or Modgen, which feature their own idiosyncratic syntaxes
based respectively on Python and C++, is a slightly longer learning curve. The benefits of
JAS-mine, however, include the possibility to extend the platform in endless directions due to
its open-source architecture, the readability that comes with an object-oriented approach espe-
cially when the models scale up, and the power and flexibility given by the possibility of storing

20

the underlying data in a relational database or in comma-separated values (csv) files. As with
most things, diversity is a strength, and in this light we hope JAS-mine will be welcomed in the
agent-based and dynamic microsimulation communities.

Acknowledgments

The authors would like to acknowledge the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work. http://dx.doi.org/10.5281/zenodo.22558.
For this reasearch, Matteo Richiardi benefited from support by a Marie Curie Intra European
Fellowship within the 7th European Community Framework Programme.

REFERENCES

Baekgaard, H. (2002). Micro-macro linkage and the alignment of transition processes: some
issues, techniques and examples. Technical Report 25, National Centre for Social and Economic
Modelling (NATSEM).

Bilcke, J., Beutels, P., Brisson, M., and Jit, M. (2011). Accounting for methodological, structural,
and parameter uncertainty in decision-analytic models: A practical guide. Medical Decision
Making, 31(4):675–692.

Creedy, J., Kalb, G., and Kew, H. (2007). Confidence intervals for policy reforms in behavioural
tax microsimulation modelling. Bulletin of Economic Research, 59(1):37–65.

De Menten, G., Dekkers, G., Bryon, G., Ligeois, P., and O’Donoghue, C. (2014). Liam2: a new
open source development tool for discrete-time dynamic microsimulation models. Journal of
Artificial Societies and Social Simulation, 17(3):art. 9.

Gallegati, M. and Richiardi, M. (2009). Agent-based modelling in economics and complexity. In
Meyer, B., editor, Encyclopedia of Complexity and System Science, pages 200–224. Springer.

Gilbert, N. and Terna, P. (2000). How to build and use agent-based models in social science.
Mind & Society, 1(1):57–72.

Keller, A., Agarwal, S., and Jensen, R. (1993). Enabling the integration of object applications
with relational databases. In Proc. of ACM-SIGMOD.

Klevmarken, A. (2002). Statistical inference in micro-simulation models: incorporating external
information. Mathematics and Computers in Simulation, 59:255–265.

Leombruni, R. and Richiardi, M. (2006). Laborsim: An agent-based microsimulation of labour
supply. an application to italy. Computational Economics, 27(1):63–88.

Li, J. and O’Donoghue, C. (2014). Evaluating binary alignment methods in microsimulation
models. Journal of Artificial Societies and Social Simulation, 17(1):art. 15.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and Balan, G. (2005). Mason: A multiagent
simulation environment. Simulation, 81(7):517–527.

21

Luna, F. and Stefansson, B. (2000). Economic Simulations in Swarm: Agent-Based Modelling
and Object Oriented Programming. Kluwer.

Mannion, O., Lay-Yee, R., Wrapson, W., Davis, P., and Pearson, J. (2012). Jamsim: a microsim-
ulation modelling policy tool. Journal of Artificial Societies and Social Simulation, 15(1):art.
8.

Minar, N., Burkhart, R., Langton, C., and Askenazi, M. (1996). The swarm simulation system:
A toolkit for building multi-agent simulations. Working Paper 96-06-042.

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., and Sydelko, P.
(2013). Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems
Modeling, 1(1):1–26.

Richiardi, M. (2013). The missing link: Ab models and dynamic microsimulation. In Leitner, S.
and Wall, F., editors, Artificial Economics and Self Organization, volume 669 of Lecture Notes
in Economics and Mathematical Systems. Springer.

Richiardi, M. and Poggi, A. (2014). Imputing individual effects in dynamic microsimulation
models. an application to household formation and labor market participation in italy. Inter-
national Journal of Microsimulation, 7(2):3–39.

Richiardi, M. and Richardson, R. E. (2016). Agent-based computational demography and mi-
crosimulation using jas-mine. In Grow, A. and van Bavel, J., editors, Agent-Based Modelling
in Population Studies: Concepts, Methods and Applications. Springer.

Richiardi, M., Richardson, R. E., Pacelli, L., and Poggi, A. (2016a). Female labour force projec-
tions using microsimulation for six eu countries. Technical report, Institute for New Economic
Thinking.

Richiardi, M., Richardson, R. E., Pacelli, L., and Poggi, A. (2016b). Understanding low labour
force participation: Policy evaluation using microsimulation. Technical report, Institute for
New Economic Thinking.

Richiardi, M. and Sonnessa, M. (2013). Jas 2: A new java platform for agent-based and mi-
crosimulation modeling. Working Paper 134/2013, LABORatorio Revelli.

Schelling, T. (1969). Models of segregation. American Economic Review, 59:488–493.

Sonnessa, M. (2004). Jas: Java agent-based simulation library. an open framework for algorithm-
intensive simulations. In Leombruni, R. and Richiardi, M., editors, Industry and Labor Dy-
namics: The Agent-Based Computational Economics Approach. World Scientific Press.

Statistics Canada (2009). Modgen Version 10.1.0 Developer’s Guide.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

Wolfson, M., Gribble, S., and Beall, R. (2016). Exploring contingent inequalities - building
the theoretical health inequality model. In Grow, A. and van Bavel, J., editors, Agent-Based
Modelling in Population Studies: Concepts, Methods and Applications. Springer.

22

	1 pagina WP147.pdf
	Richiardi-Richardson 2016 JAS-mine.pdf
	Introduction
	Why another platform?
	The JAS-mine Philosophy
	JAS-mine Specifications
	The Structure of a JAS-mine Project
	Separation of Data and Code
	Input - Output Communications
	Relational databases in JAS-mine
	Embedded Relational Database Management System via Object-Relational Mapping

	Key JAS-mine Features
	Simulation Time
	Statistics
	Regressions and Uncertainty Analysis
	Alignment
	Matching
	Extensions & Third-Party Solutions

	Execution Modes
	Applications and Performance
	Conclusions

