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Abstract

We study the impact of ultra-fast broadband (UFB) infrastructures on the total factor

productivity (TFP) and labor productivity of firms. We use unique balanced panel data

for the 2013-2019 period on incorporated firms in Italy. Using the geographical location of

the firms, we match firm data with municipality-level information on the diffusion of UFB,

which started in 2015 in Italy. We derive consistent firm-level TFP estimates by adopting

a version of the Ackerberg et al.’s (2015) method, which also accounts for firm fixed effects.

We then assess the impact of UFB on productivity and deal with the endogeneity of UFB by

exploiting the physical distance between each municipality and the closest backbone node.

Our results show an overall positive impact of UFB on productivity. Services companies

benefit the most from advanced broadband technologies, as do firms located in the North-

West and South of Italy. We further decompose the impact of full-fiber networks (FTTH)

from mixed copper-fiber connections (FTTC) and find that FTTH networks significantly

contribute to enhancing firm productivity. Finally, by exploiting Labor Force Survey data,

we provide suggestive evidence that productivity increases from UFB might be related to

structural changes at the workforce level.
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1. Introduction

After one year of the COVID-19 pandemic and its shattering effects on our economies, on

the 9th of March 2021, the European Union (EU) released a new plan to spur digitization

and the deployment of digital infrastructures in order to “empower businesses and people

in a human-centered, sustainable, and more prosperous digital future”. This plan, named

“Digital Compass 2030”, is aimed at stimulating a substantial digital transformation of EU

firms and public services.1 However, such a dramatic change in businesses would only be

possible if all the firms and citizens participated in the digital transformation. The EU plan

specifically considers the deployment of ultra-fast broadband (UFB) networks as a critical

infrastructure to obtain such targets. These networks rely on optical fiber rather than copper

wire for the “last mile”. Fiber-based networks are considered the most resilient, secure, and

trustworthy infrastructures to support all the emergent digital technologies and they thus

represent a key asset for the economic success and recovery of the EU. All across Europe

- and particularly in Italy - Next Generation EU funds are largely being devoted to the

deployment of UFB infrastructures.2

The goal of this paper is to provide the first quantitative assessment of the impact of UFB

investments on the productivity of firms. We focus on firm productivity, that is, on both

labor and total factor productivity (TFP), as it is widely recognized as the ultimate engine

of growth in today’s global economies (OECD, 2015). The deployment of UFB infrastruc-

tures can lead to several effects on economic activities and, in particular, on the productive

performance of firms. Productivity may be spurred via more efficient business processes,

the use of new digital technologies, and the acceleration of innovation enabled by UFB net-

works. For instance, UFB connections allow the transfer, analysis, and digital storage of

larger amounts of better-quality data at a lower cost (Benassi et al., 2021). Moreover, UFB

is a key enabling factor for flexible patterns of work, such as teleworking and smart-working,

which may be associated with higher productivity (and labor force participation, Akerman

et al., 2015). Italy represents an interesting field experiment to evaluate the effects of UFB

connections. Starting from 2015, massive investments have been made in UFB infrastruc-

1The new EU targets are i) at least 75% of EU companies should introduce new digital services, such
as cloud computing, artificial intelligence and machine learning, or the use of big data and data analytics,
by 2030; ii) at least 90% of EU firms should enhance their (basic) levels of digital intensity and skills. The
document can be downloaded here.

2In the introductory part of the 2021 Italian Recovery and Resilience Plan (“Piano Nazionale di Ripresa e
Resilienza”), Mario Draghi has written that “among the causes of the disappointing productivity trend, there
is the inability to seize the many opportunities linked to the digital revolution. This delay is due both to the
lack of adequate infrastructures and to the Italian industrial structure, which is characterized by a prevalence
of small and medium-sized enterprises that have often been slow in adopting new technologies and in moving
toward productions characterized by high value added”. The full text (in Italian) is downloadable here.

2

https://ec.europa.eu/commission/presscorner/detail/en/IP_21_983
https://d110erj175o600.cloudfront.net/wp-content/uploads/2021/04/25195706/testo_pnrr-1.pdf


tures, mostly driven by the national incumbent telecommunication operator, Telecom Italia

Mobile (TIM). Moreover, a new operator (OpenFiber) entered the market in 2017 and has

significantly fostered UFB deployment.

We exploit a unique balanced panel data set for the 2013-2019 period, which collects

municipality-level information on UFB access matched with firm-level data on Italian private-

sector incorporated companies that were active in 2019. Our data are obtained from different

sources. First, we have access to TIM and OpenFiber data, and we observe the staggered

diffusion of UFB connections for each municipality. We also observe whether each municipal-

ity has access to basic fiber connections (FTTC), or to the most advanced full-fiber (FTTH)

networks.3 Second, we gather firm-level information from AIDA, a rich data set provided

by the Bureau Van Dijk. This data set collects financial and other firm-level information

on the Italian companies whose balance sheets are required to be filed with the chambers

of commerce (i.e., incorporated companies). We thus match UFB municipal data with firm

data by using the operating center location of the firms. Third, we use representative data

on Italian private-sector employees from the Labor Force Survey (LFS). Although we do not

have firm-level data on the composition of the workforce, LFS allows us to explore the rela-

tionship between UFB diffusion and relevant workforce indicators (e.g., based on skills and

age) at detailed levels of aggregation. Finally, we retrieve municipality demographics, which

we use as controls in the econometric analysis, from the Italian Statistical Office (ISTAT).

The empirical analysis is performed in two steps. The first one recovers measures of firm

productivity. The TFP estimates of firms are obtained as the estimation residuals of sector-

specific log-linearized value-added production functions. We pay attention to the consistent

estimation of TFP by adopting a recent nonparametric method based on Ackerberg et al.

(2015) and Lee et al. (2019). In particular, our TFP indicators control for the simultaneity of

production inputs and explicitly remove unobserved time-invariant firm heterogeneity. We

instead computed labor productivity as the logarithm of value added over the number of

employees. Labor productivity focuses on one input of the production process (i.e., labor),

while TFP provides a commonly used indicator for the overall productive performance of

a company (DeStefano et al., 2018; Devicienti et al., 2018; Van Biesebroeck, 2007). In the

second step of the empirical analysis, we investigate the impact of UFB access on the TFP and

labor productivity of firms. Potential identification issues may arise from the non-randomness

of the UFB diffusion process. Unobserved local shocks may affect both the UFB investment

3FTTC refers to “fiber-to-the-cabinet” networks, which involve a first segment of fiber from the local
central office to a cabinet near the customers’ premises and then a final segment of copper wire. FTTH
stands for “fiber-to-the-home”, in which local central offices and the customers’ premises are fully connected
by fiber cables.
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decisions and firm productivity, thereby biasing the ordinary least squares (OLS) estimates.

To account for such endogeneity concerns, we use an instrumental variable (IV) approach

that exploits plausibly exogenous variation in the distance between each municipality and its

closest national backbone node (Cambini and Sabatino, 2021; Campante et al., 2017; Miner,

2015). These nodes, called “optical packet backbone” (OPB) nodes, are upgraded facilities

of the old telephone communication network constructed around the early 2000s, hence their

location can be considered exogenous to the current productivity levels once we account for

firm-level fixed effects.

The results suggest an overall positive impact of UFB on firm productivity, in the 2.9-

3.8% range, for TFP and labor productivity, respectively. However, such an overall positive

impact hides substantial heterogeneities across industry sectors and geographical locations.

First, we find that only services companies obtain significant productivity gains from UFB

connections. Along the same lines, only firms in the North-West and South of Italy are found

to experience significant productivity increases from UFB connections. We then decompose

the effect of FTTH from standard UFB connections. Although FTTC infrastructures are

found to be significant drivers of firm productivity, the results show an additional positive

contribution of the most advanced FTTH networks. Finally, by using LFS data, we provide

suggestive evidence that the diffusion of UFB is associated with substantial changes in the

composition of the workforce of firms. In particular, we find that the UFB roll-out is related

to significant decreases in the share of low-skilled workers employed by firms, as well as a

significant increase in the share of young employees. These results are consistent with the

existence of a substantial generational and skill-based digital divide (Akerman et al., 2015;

Card and DiNardo, 2021; Goos et al., 2014; OECD, 2018), whereby firms tend to reconfigure

their workforce in favor of employees that are more able to exploit the advantages offered by

the digital revolution.

These results are particularly important for the current policy debate in Europe. The

recovery and resilience plans of most EU countries contain relevant public interventions to

spread UFB connections. The Italian government, for instance, decided to invest as much as

3.8 billion euros in its national recovery plan to complete the roll-out of FTTH connections,

plus 2.9 billion euros to strengthen the digital transformation of firms and public offices.

This study presents the first quantitative support to those public policies. Our results show

that such plans can have a substantial effect on fostering firm productivity.

The remainder of the paper is organized as follows. Section 2 provides a review of the

existing empirical studies on this topic and highlights the contributions of this paper to

the extant literature. Section 3 discusses the data and the productivity measures used in

the paper in detail and presents preliminary descriptive evidence. Section 4 describes the
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empirical setting and the adopted identification strategy. Section 5 presents and discusses

the results. Finally, Section 6 concludes and highlights possible avenues for future research.

2. Previous empirical literature and background

The literature on the impact of broadband investments on economic outcomes is extensive.4

The analyses range from the impact on GDP growth at national or local levels (Czernich

et al., 2011; Kolko, 2012), to labor market outcomes (Forman et al., 2012; Akerman et al.,

2015), to educational attainments and political outcomes (Belo et al., 2013; Campante et al.,

2017; Gavazza et al., 2018), among others. Almost all these studies focus on standard ADSL-

based technologies, whereas only a few of them evaluate the economic effects of investments

in UFB infrastructures. Briglauer et al. (2021), for instance, assess the economic benefits of

UFB within and across neighboring areas in Germany, and show that an increase in average

bandwidth speed by one unit (i.e., 1 Mbit/s) induces a rise in regional GDP of 0.18%.

Another recent paper by Cambini and Sabatino (2021) focuses on the impact of UFB on firm

turnover in Italy. The authors show that UFB significantly reshapes the national industrial

structure by increasing firm exit - particularly that of small enterprises - without significantly

affecting firm entry.

A stream of literature investigates the effects of broadband technologies on the perfor-

mance outcomes of firms. All the extant studies on this topic focus on basic (i.e., ADSL-

based) broadband infrastructures and report contrasting results, ranging from positive effects

to non-significant ones. Grimes et al. (2012) examine the impact of a firm’s ADSL broadband

adoption on labor productivity, and find a significantly positive effect of around 7-10%. Sim-

ilarly, using data from a single Italian administrative region (Trentino-Alto Adige), Canzian

et al. (2019) show that ADSL broadband connections are associated with an increase in

revenues and total factor productivity (+14.8 and +9.1%, cumulatively over two years), but

not with any significant changes in personnel costs or employment levels. On the contrary,

Bertschek et al. (2013), who employ firm-level data on Germany to analyze the relationship

between the ADSL broadband adoption and changes in labor productivity of firms in the

2001-2003 period, show that basic broadband adoption does not affect firm productivity

to any great extent. Colombo et al. (2013) report a similar result for Italian small- and

medium-sized enterprises observed over the 1998-2004 period. Using a panel of Irish man-

ufacturing firms, Haller and Lyons (2015) also document a non-significant effect of ADSL

broadband adoption on firm productivity. Finally, using cross-sectional firm-level data on

the UK, DeStefano et al. (2018) find that ADSL broadband availability significantly affects

4See Greenstein (2019) for a detailed literature review.
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firm size, but not firm productivity.

We contribute to the existing literature in several ways. First, none of the extant studies

look at the effects of the most advanced UFB infrastructures on firm performance. Our

paper thus provides the first quantitative assessment of the impact of UFB connections

on firm productivity. Second, we explore the presence of heterogeneous patterns in the

effect of interest across important firm-level characteristics, including economic sectors and

geographical locations. Third, our paper is also the first to empirically disentangle the impact

of full-fiber networks from the baseline mixed copper-fiber connections. Finally, we provide

suggestive evidence on the underlying dynamics of workforce reconfiguration following UFB

deployment as a potential channel for its impact on firm productivity.

3. Data

3.1. Firm-level data and productivity measures

We gather the firm data from AIDA, a large data set provided yearly by the Bureau Van Dijk.

AIDA reports detailed financial and other firm-level information on all the (non-agricultural

and non-financial) private-sector Italian firms that are required to file their balance sheets

with a chamber of commerce (i.e., incorporated companies). Apart from balance-sheet infor-

mation (e.g., value added, tangible fixed assets, expenditure on intermediate goods), AIDA

also provides detailed information on the economic sector of a firm (Ateco 2007 classification),

its location, and the number of employees, among others.

First, we select the firms in AIDA that were still active in 2019 (i.e., our last year of

observation of UFB deployment; see below). We compute TFP estimates using data from

2010, thereby exploiting all the available years in AIDA in order to compute the firms’ TFP

more precisely.5 This sample of firms, referring to the 2010-2019 period, amounts to slightly

fewer than 3 million firm-year observations (after a basic cleaning described below in this

subsection).

In order to estimate a firm’s TFP, we start by considering the following production

function:

Yit = f(Lit, Kit;Ait), (1)

where the output of firm i at time t (Yit) is modeled as a function of labor (Lit) and capital

(Kit), and Ait is the TFP. Ait is that part of the output that is not explained by labor and

capital inputs, and it can be thought of as a black box containing several aspects of the firm,

such as its productive, organizational, and logistic performance. In sum, TFP captures the

5AIDA provides a 10-year history from the last available year at the moment of data extraction.
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overall productivity level of a firm. We then retrieve the TFP estimates according to:

Ait = f−1(Yit, Lit, Kit). (2)

In particular, we assume that the production function in Equation (1) is a log-transformed

value-added Cobb-Douglas function. A critical and well-known issue in the estimation of

production functions is the simultaneity of inputs, that is, inputs are endogenous since they

respond to a firm’s productivity level. For example, a highly productive firm will produce

more, using more inputs. Similarly, a productivity improvement (e.g., due to the introduction

of a process innovation) will lead to an increase in the usage of inputs. This simultaneity

problem makes the OLS estimates of the input contributions - and, therefore, of TFP -

inconsistent. A fixed effects (FE) estimation (Mundlak, 1961) cannot solve the issue either,

although it removes the fixed firm-specific productivity level.6 Therefore, a method is needed

that can control for a more articulated framework, whereby the unobserved productivity level

can fluctuate over time, and production inputs are allowed to respond to such fluctuations.

The control function approach proposed by Ackerberg et al. (2015) (ACF, hereafter)

represents a solution to the problem of simultaneity. In a nutshell, ACF propose using a

firm’s demand for intermediate inputs to proxy for its unobserved productivity level. The

rationale is that intermediate inputs can capture unobserved productivity because firms can

easily adjust their use of intermediate inputs in response to productivity shocks.7 In this

paper, we use a modified version of the ACF method, recently developed by Lee et al.

(2019) (ACF-FE, hereafter), which extends the ACF procedure to explicitly account for firm

fixed effects, whereby firm-specific persistence in productivity levels is accounted for. This

is important because substantial and persistent differences in productivity levels have been

found ubiquitously in the data (Syverson, 2011). On the one hand, explicitly accounting for

firm fixed effects ensures that unobserved time-invariant firm heterogeneity is eliminated.

On the other hand, it also improves the ability of the proxy variable to capture and control

for the fluctuations in the unobserved productivity levels. The ACF and ACF-FE methods

are discussed in Appendix A in detail.

We measure a firm’s output (Yit) with its value added. The labor input (Lit) is measured

6Such a method would only deliver consistent estimates under two unrealistic assumptions: i) the omitted
variable bias is derived exclusively from unobserved time-invariant variables and ii) inputs do not respond
to unobserved (by the econometrician) productivity fluctuations.

7The ACF estimation method is part of the larger family of the so-called “control function estimators”
(CFEs), introduced in the seminal work of Olley and Pakes (1996). CFEs have been and are still widely
used in applied studies, and they represent the standard way of estimating firm-level production functions
(Ackerberg et al., 2015).
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by considering the number of employees. We measure capital (Kit) by referring to the phys-

ical capital stock (i.e., tangible fixed assets), computed through a version of the permanent

inventory method (PIM).8 The intermediate input demand (used in the ACF-FE method to

proxy a firm’s unobserved productivity level) is measured by the intermediate input items of

the profit and loss accounts, which include both intermediate goods and services used in the

production process. We estimate a separate production function for each economic sector,

as defined by the 2-digit Ateco 2007 classification. This allows us to take into account any

structural differences in the production processes among different industries. In total, we

pursue the ACF-FE estimation of 67 different production functions. All these estimations

include year, province, sector (3-digit Ateco 2007), size, and firm age category dummies,

and year-sector and year-province interactions. We perform a basic cleaning of the sam-

ple by removing observations with missing or non-usable information on the key variables

(e.g., number of employees, value added, tangible fixed assets), and (a few) firms belonging

to 2-digit sectors with too few observations (which we set below 100). In order to imple-

ment the ACF-FE method, we have to focus on firms with at least two consecutive years of

observations.

We also compute the labor productivity of the firms from the AIDA data set as the

logarithm of value added over the number of employees.

3.2. UFB data and the matching process

Our UFB data come from two main sources. First, we have access to TIM network data,

which collect information on the staggered UFB roll-out for the Italian incumbent operator

since the introduction of UFB networks in Italy in 2015. We observe which municipalities

have access to TIM’s UFB for each year of observation. The second data source comes from

OpenFiber, which collects additional information on the municipalities covered by the only

alternative UFB operator that entered the market in 2017.

The main variable of interest, UFBm,t, is an indicator that takes a value of one if mu-

nicipality m has access to UFB at time t, and zero otherwise. As mentioned earlier, we also

observe which municipalities have access to FTTH connections over time. The FTTHm,t

variable thus takes a value of one if municipality m has access to FTTH connections at time

t, and zero otherwise. It should be noted that our indicator of UFB (and FTTH) refers to

the availability of such connections in a municipality at a certain time. One issue that arises

8This version of the PIM, which is implemented by Card et al. (2014), applies a constant depreciation
rate equal to 0.05; the benchmark in the first year is given by the book value of tangible fixed assets. As
direct information on investments is unavailable in our data, these are computed as the difference between
a firm’s fixed assets for two contiguous years.
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with this indicator is whether UFB diffusion is correlated with UFB adoption by Italian

companies. We report the evolution of UFB subscriptions for both households and firms

between 2015 and 2019 in Figure 1. As in Akerman et al. (2015), the pattern in the figure

suggests a very marked correlation between UFB household and firm usage, thus indicat-

ing that our municipality-level UFB deployment data adequately proxy the supply of UFB

connections to firms.

Moreover, we have information available on the location of TIM’s national backbone

nodes, that is, large telecommunication infrastructures that reroute the traffic at the national

level. From this information, we construct our instrumental variable, OPBm, which defines

the distance (in kilometers) between each municipality and the closest national backbone

node (see the discussion in Section 4). We also observe the diffusion of the main UFB

input, called “optical line terminal” (OLT), from which we derive the OLTm,t variable. This

variable, which is used as a control in our regressions, defines the distance (in kilometers)

between each municipality and the closest OLT.9

Finally, we obtain demographic information from ISTAT. These variables, used as controls

in the regressions, include the current population in municipality m at time t and the degree

of urbanization of each municipality in 2011 (this information is obtained from the 2011

Italian Census).

We then match the firm-level data with the municipality-level data by using the informa-

tion provided by AIDA on the firms’ locations. We use the firms’ operating center locations

instead of their registered office locations to match the two data sources, since the former re-

flects the location in which the firm actually operates more correctly.10 In sum, by matching

our UFB data with the municipality where each firm is located, we are able to identify the

firms that have access to UFB at each point in time versus firms located in municipalities

without UFB connections. The final matched data set, on which we analyze the impact

of UFB on firm productivity, is composed of 1,278,284 firm-year observations for a total of

9OLTs are the endpoint devices in a passive optical network. Not all municipalities have an OLT in-
stalled in their central offices. Since optical cables need to be laid underground from the OLT to the users’
premises, such a distance proxies the deployment costs necessary to provide UFB connections (see Cambini
and Sabatino, 2021, for details on the upstream telecommunication infrastructures).

10One issue that arises with the matching process is caused by the presence of multi-establishment firms,
which cannot be allocated to a single municipality. Unfortunately, we cannot directly remove such firms
because AIDA does not provide plant-level information. However, we construct a proxy to identify multi-
establishment firms on the basis of the presence of consolidated balance sheets and firm size (above 250
employees). We then remove such firms from the estimation sample. The restriction on firm size is also
useful because large firms usually have dedicated access to UFB connections, regardless of municipality
deployment, which can confound the results. Nonetheless, we include these firms in robustness analyses, and
find no significant variations in the results. The results are available upon request.
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182,612 firms observed each year from 2013 to 2019.11

3.3. Preliminary descriptive evidence

We present some descriptive evidence relevant to our analysis in this subsection.

Table 1 presents an overall description of our final data set. The number of employees in

the average firm is small, around 16, which is consistent with the diffusion of micro and small

companies in the Italian industrial structure. The median value of employees is 8, which

points to half of the sample being made up of micro firms. The companies obtain around

4.2 million euros on average from the sales of their goods and services (i.e., revenues), but,

for half of them, this value is below 1.3 million euros. On average, value added per worker is

62,000 euros per year. We observe that 58.6% of our firm-year observations are covered with

UFB connections. However, if we only consider the years following the UFB roll-out, such a

percentage increases to 82%. Our sample firms are, on average, 20 years old. Around 31%

of them are manufacturing firms, 12% operate in the construction sector, whereas another

26% and 31% belong to the trade and services sectors, respectively. Around one-third of

the firms are located in the North-West of Italy (34.6%), 26.4% are in the North-East, and

another 20.7% and 18.3% are from the Center and South/Islands macro-areas, respectively.

Figures 2 to 4 refer to firm productivity. Figure 2 shows the evolution of TFP and

labor productivity of our sample firms from 2013 to 2019. Productivity growth, although

increasing slightly, is sluggish (e.g., around +3.5% cumulatively in our 7-year span for labor

productivity), consistently with other recent evidence (Bugamelli et al., 2018). Figure 3

instead shows the evolution of TFP, broken down into the four previously mentioned macro

sectors: manufacturing, construction, trade, and services. Although weakly increasing trends

can be detected for all the sectors, the TFP levels are somewhat heterogeneous. Services

firms display the highest TFP values, whereas manufacturing is characterized by the lowest

TFP, with construction and trade sectors lying somewhere in between. Finally, Figure 4

shows the evolution of TFP for each macro-area, as previously defined. As is well known,

Italy presents a substantial territorial heterogeneity, also in terms of productive performance

of its companies, with the Northern regions in the lead, followed by the Central regions, and

finally by the Southern regions (Deleidi et al., 2021). This is evident from the figure, which

11Although we use the 2010-2019 observation years to estimate firm-level TFP, we focus on the 2013-2019
time frame because we do not have data for the early years of many firms. This happens either because those
firms were created after 2010, or because some values pertaining to the first years of the panel are missing.
By restricting our sample to the 2013-2019 time window, we are able to (i) obtain two years of observation
before UFB roll-out, and (ii) keep a significantly large number of firms for which we have TFP estimates for
each year of observation. We run robustness checks using the 2012-2019 and 2011-2019 panel data sets, and
find no substantial variations in the results. The results are available upon request.
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shows North-West and North-East regions have the highest TFP levels, the Center of Italy

is somewhere in the middle, and, with a somewhat large gap, the Southern areas have the

lowest TFP levels.

Finally, Figure 5 reports the percentage of municipalities with access to different broad-

band connections (i.e., ADSL, generic UFB, and FTTH) during the 2013-2019 period. First,

we can notice that ADSL connections cover almost all the Italian municipalities from the

beginning of our time frame. Second, by 2019, UFB covers around 55% of the municipali-

ties, which, however, amounts to about 85% of the Italian population. Finally, only a small

proportion of municipalities have access to the most advanced FTTH connections (around

8% by 2019). However, since these are typically large cities and metropolitan areas, this

results in almost 40% of the Italian population being covered by FTTH in 2019.

4. Empirical strategy

4.1. Empirical model and identification

In the second step of our empirical analysis, we explore the impact of UFB access on firm

productivity. We consider several specifications of the following regression model:

productivityi,m,t = α + βUFBm,t + θXm,t + τt + µi + ui,m,t. (3)

The dependent variable, productivityi,m,t, is either the estimated ACF-FE TFP ( !Ai,m,t) or

labor productivity. Our variable of interest is UFBm,t, the indicator that identifies munici-

palities with access to UFB connections. The Xm,t vector collects municipality-level controls,

such as the current population and aforementioned OLTm,t variable. Moreover, we include in-

teractions of baseline municipality characteristics with different time trend functions. These

additional covariates allow us to very flexibly control for differential trends in firm pro-

ductivity based on pre-UFB municipality characteristics.12 The baseline municipality-level

controls include the average productivity and firm size, the number of firms operating in

the municipality, all referring to 2013, and the degree of urbanization, which we obtain from

the 2011 Italian Census. The time trend functions used to interact the baseline municipal-

ity controls are, alternately, (i) a 4th-degree polynomial in time, (ii) a Post2015 dummy in

addition to the 4th-degree polynomial in time, and (iii) year-specific dummies. τt collects

region-year and sector-year fixed effects, while µi denotes firm-specific fixed effects. Finally,

ui,m,t is a mean-zero error term. Throughout the analysis, we cluster standard errors at the

12This is particularly relevant in our IV approach since we have to ensure that the instrument does not
correlate with any underlying trends that might affect firm productivity (see the discussion below).
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municipality level, thereby allowing for serial correlation within each municipality.

The empirical model described by Equation (3) resembles an intention-to-treat analysis,

such as the one in Akerman et al. (2015), where the staggered roll-out of UFB coincides with

the intention-to-treat assignment. The identification of the causal impact of UFB on firm

productivity requires such an assignment to be as-good-as-random, conditional on observ-

ables. In other words, UFB should be uncorrelated with the error term ui,m,t, conditional on

the firm- and municipality-level controls included in Equation (3). Although our fixed effects

estimation allows us to control for time-invariant firm-level unobservables, other time-varying

firm- or municipality-level shocks may correlate with firm productivity, thus implying that

the UFB estimate may be confounded by such an omitted variable bias.13

Since UFB deployment is the result of a mixture of private and public investments,

it is unclear what the expected sign of the omitted variable bias should be. On the one

hand, telecommunication operators could invest first in high-density municipalities, which

are typically characterized by a large number of firms and high levels of productivity. This

would yield a positive correlation between UFB roll-out and firm productivity, which would,

in turn, produce an overestimation of the impact of UFB on firm productivity. On the other

hand, specific public programs have been implemented in order to ensure UFB deployment

also in depressed geographical areas, which are typically characterized by low levels of firm

productivity (particularly in the South of Italy, see Figure 4).14 This would imply a negative

correlation between firm productivity and UFB roll-out, thereby underestimating the true

effect of UFB on firm productivity.

We deal with the endogeneity of UFB diffusion by exploiting the incumbent’s upstream

telecommunication infrastructure. In particular, we leverage on the geographical location of

TIM’s backbone nodes. As mentioned earlier, these are pre-existing facilities of the Italian

telecommunication network that were realized at the beginning of the 2000s, so that their

location can be considered exogenous to any current contingencies that might affect firm

productivity.15 Thus, we compute the distance, in kilometers, from the closest backbone

node (OPBm) for each municipality and we interact it with a Post2015 dummy, which takes

the value of one from the starting year of UFB roll-out. Our exclusion restriction assumption

13The ACF-FE estimation of TFP carried out in the first step of our procedure does not solve any
endogeneity problems related to UFB access in the second step. It instead ensures that a firm’s TFP is
consistently estimated.

14Indeed, in December 2013, the Italian government launched a new public program to cover around 5
million households in 784 municipalities located in Southern regions with UFB connections. Such a program,
named “EUROSUD”, covered approximately 40% of the households in those regions. The deployment started
in 2015 and finished at the end of 2017, with a public contribution of around 325 million euros. TIM won
all the assignments and contributed with an additional 160 million euros.

15Figure 6 depicts the location of the 35 backbone nodes used in our IV approach.
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is that, whatever correlation exists between firm productivity and municipality distance from

the closest backbone node, such a correlation is constant around the introduction of UFB.

Our exclusion restriction assumption could be violated by the existence of underlying

municipality-level trends correlated with both our instrument and firm productivity. For

instance, firms located farther away from OPB nodes may have a different evolution of

productivity from those firms relatively closer to OPB nodes for reasons that are unrelated

to the UFB roll-out. Therefore, we also control for differential trends in our IV estimates

on the basis of the municipality characteristics discussed before (see Cambini and Sabatino,

2021; Campante et al., 2017, for a similar empirical strategy).

We test the validity of our instrument through the following reduced form regression:

productivityi,m,t = α +
"

t

δtOPBm × yeart + θXm,t + τt + µi + ei,m,t, (4)

where δt are the coefficients of interest, that is, those associated with the interactions of

OPBm with year-specific dummies, and the other variables are defined as in Equation (3).

If the correlation between OPBm and firm productivity is fully driven by UFB roll-out, we

should observe no significant correlation before 2015. We thus check whether pre-2015 δt are

statistically different from zero. This test, in fact, resembles a standard parallel trend test in

a difference-in-differences model in which the treated units are those firms located relatively

close to OPB nodes.

Figure 7 depicts the estimated δt with the associated 95% confidence interval, excluding

the 2013 baseline year. The main coefficient of interest is the one associated with the

2014 interaction, which is not statistically different from zero at the 95% level, for both

TFP (panel a) and labor productivity (panel b). Hence, OPBm is not correlated with firm

productivity before the advent of UFB, thereby validating the exogeneity of the instrument.

This experiment is also informative about the expected second-stage results in our two-stage

least squares (2SLS) estimation. Since (i) we observe a clear negative relationship between

firm productivity and OPBm after 2015 (Figure 7) and (ii) more distant municipalities are

less likely to receive UFB connections, then our estimates can be expected to yield a positive

impact of UFB on firm productivity.16

We then run the same sort of analysis by sector of economic activity. This allows us to

check whether our instrument is valid for all the sectors. Moreover, it gives us information

on the industries most affected by UFB roll-out. The results are collected in Figure 8 for

16As shown in Angrist and Pischke (2008), the relationship between the dependent variable and the instru-
ment is proportional to the (second-stage) relationship between the dependent variable and the endogenous
variable. Hence, reduced form estimates are informative about the sign of the 2SLS second-stage estimates.
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manufacturing (panel a), construction (panel b), trade (panel c), and services (panel d).

First, we observe flat trends before 2015 across all the industry sectors. Second, the negative

overall relationship between OPBm and firm productivity documented earlier on appears

to be fully driven by the services sector. On the contrary, we do not detect any significant

relationship between OPBm and firm productivity for the other industries.

Finally, the dynamics of the correlation between OPBm and firm productivity after 2015

is also informative about the timing of the productivity effect of UFB. In particular, the

downward shift happens in 2017, two years after the initial introduction of UFB. There are

two possible explanations for such an effect. On the one hand, the impact of UFB may

take time to materialize, because, for instance, firms adopt UFB-based technologies with a

certain delay. On the other hand, since the FTTH deployment started in 2017, the effect

may be driven by these connections rather than basic UFB. We shed some light on this issue

in Section 5, where we include both basic UFB and FTTH indicators in the empirical model.

5. Results and discussion

5.1. The overall impact of UFB on firm productivity

Table 2 collects the main results concerning the overall impact of UFB on TFP and labor

productivity. The table reports two sets of OLS estimates of Equation (3) and three sets of

the IV-2SLS estimates. All these estimates control for the population of the municipality

(expressed in logarithm) and OLTm,t, as well as firm, year-region, and year-sector fixed

effects. The first OLS specification (OLS1) only includes the aforementioned controls. The

second OLS regression (OLS2) adds the baseline municipality-level controls interacted with a

4th-degree time trend polynomial. As specified in Section 4, these municipality-level controls

include the average productivity (expressed in terms of labor productivity), the average size

(expressed in terms of employees), the number of firms, all computed for the 2013 baseline

year, as well as the level of urbanization obtained from the 2011 Italian census. The first IV

specification (IV1) starts from Specification OLS2 and instruments the presence of UFB with

our Post2015 × OPBm instrument. The second IV specification (IV2) adds to Specification

IV1 the interaction between the municipality-level controls and a Post2015 dummy variable,

which further controls for a one-off shift in productivity around the introduction of UFB.

Finally, the third IV specification (IV3) non-parametrically controls for the municipality-

level factors through interactions with year dummies. Columns 1 to 5 refer to TFP, whereas

Columns 6 to 10 pertain to labor productivity as a dependent variable. As mentioned earlier,

the standard errors are always clustered at the municipality level.

Focusing on the OLS1 estimates (Columns 1 and 6), we observe a negative and statis-

tically significant (though small) coefficient associated with UFB for both measures of firm
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productivity. These estimates suggest a reduction of 0.5% and 0.7% on TFP and labor pro-

ductivity following the deployment of UFB in the municipality where the firm is located.

When controlling for relevant municipality-level differential trends (Columns 2 and 7), the

OLS estimates move toward zero and become not statistically significant, thereby suggesting

a negative bias from the omitted variables.

Moving to our baseline IV results (Specification IV1; Columns 3 and 8), the estimated

coefficients rise, and turn positive and significant. The estimated impact of UFB on firm

productivity is in the 2.9%-3.8% range for TFP and labor productivity, respectively. When

we insert other controls for differential time trend functions (Specifications IV2 and IV3),

the coefficients remain positive and significant, slightly increasing in magnitude.

Table 3 presents the first-stage results of our IV-2SLS estimation, one for each specifica-

tion. The coefficients associated with the instrument (i.e., Post2015 × OPBm) are negative

and significant at the 1% level, as one would expect, with F-test statistics well above the

usual threshold levels.

The observed positive effect of UFB deployment on firm productivity could derive from

several channels. High-speed connections are at the core of virtually all Fourth Industrial

Revolution (4IR) technologies, such as big data analytics, artificial intelligence, robotics, and

cloud computing, which have been identified as critical drivers of productivity enhancements

(Benassi et al., 2021). Therefore, UFB connections might spur productivity by enabling in-

novative and more efficient business processes, as well as through the acceleration of product

innovations. Relatedly, UFB deployment might result in productivity enhancements from

structural reconfigurations of the workforce toward (more productive) high-skilled tasks, a

tendency that has been widely documented in recent years following 4IR innovations (Aker-

man et al., 2015; Card and DiNardo, 2021; Goos et al., 2014).

5.2. Sectoral and geographical heterogeneities

Up to now, the results suggest that UFB connections have a positive and significant

impact on firm productivity, that is, on both TFP and labor productivity. However, do

the results in Table 2 hide diversified effects across the industry sectors and geographical

locations of the firms? In this subsection, we explore whether this is the case. Given the

large number of firm-year observations, we perform a separate estimation on each category

of interest (i.e., we perform estimations on the split samples), thereby allowing for maximum

flexibility. For these (and the following) results, we use Specification IV1, since its associated

first-stage is more powerful, as suggested by the higher value of the F-test statistic.

Table 4 shows the diversified impact by industry sector, as defined in Table 1 (i.e., man-

ufacturing, construction, trade, and services). Consistently with the reduced form evidence
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presented in Section 4, we detect substantial differences in the impact of UFB on firm pro-

ductivity across sectors. The estimated coefficients on manufacturing, construction, and

trade sectors, although positive, are never statistically significant for either TFP or for la-

bor productivity. Instead, we detect a large and significant positive impact for the services

sector, which collects around one-third of our sample firms. The presence of UFB networks

is estimated to boost TFP by as much as 5.4% and labor productivity by 8.2% for such

companies.

Table 5 evaluates the presence of heterogeneities across the geographical locations of the

firms. We divide the companies across the four macro-areas of Italy: North-West, North-

East, Center, and Southern regions. We detect substantially diversified effects also in this

case. Firms located in the North-West appear to benefit significantly from UFB connections,

with estimated effects equal to 4% and 4.5% for TFP and labor productivity, respectively.

High coefficients, although showing lower significance levels, are also detected for the firms

located in the Southern regions of Italy. In this case, we estimate positive impacts of 9.3%

and 11.9% for TFP and labor productivity, respectively.

These additional results thus show the existence of relevant heterogeneities in the impact

of UFB on firm productivity. The positive effect on the services sector is consistent with

previous evidence on higher broadband penetration in such an industry. As pointed out by

Fornefeld et al. (2008), the companies in the services sector are “broadband leaders” in the

adoption of online technologies and more prone to using new online business services than

other sectors. Consistently, a recent report by ISTAT (2020) shows that companies in the

services sector adopt more Internet-based solutions, use more e-commerce for business-to-

business transactions (around 70% of all online transactions in Italy in 2020), and create

more revenues from online services.

From the geographical perspective, the positive impact detected for North-Western re-

gions is consistent with the idea that firms that perform better are those that benefit the

most from the use of advanced information and communication technologies (see Forman

et al., 2012, for a similar result for basic broadband networks). The North-West of Italy

has historically been the richest and most developed area of the country (Bugamelli et al.,

2018), and has consistently displayed the highest mean productivity levels, even before the

introduction of UFB (see figure 4). Moreover, ISTAT (2020) highlights a more prominent

use of online services by companies in the North-West of Italy. Surprisingly, an economically

relevant positive effect is also observed in Southern regions, which instead are those charac-

terized by the lowest average productivity levels. Such a high productivity gain, spurred by

UFB connections, might be due to the generally very low starting productivity levels of such

firms and their typically underdeveloped production processes. In these contexts, the great
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potential of UFB networks - even though not fully exploited (e.g., with the implementation

of the most advanced 4IR innovations) - might still have been able to substantially boost

productivity.

5.3. Disentangling FTTH from FTTC

So far, we have focused on the impact of UFB infrastructures on firm productivity,

regardless of the specific configuration of the network. However, our data set allows us to

investigate the contributions of basic UFB and the most advanced FTTH connections to

firm productivity. To this aim, we estimate the following regression:

productivityi,m,t = α + β1UFBm,t + β2FTTHm,t + θXm,t + τt + µi + vi,m,t, (5)

where FTTHm,t is an indicator that takes the value of one if municipality m at time t has

access to FTTH services, and zero otherwise, while vi,m,t is the usual mean-zero error term.

Since, as usual, UFBm,t switches to one for the presence of any ultra-fast configuration,

the β1 coefficient captures the impact of FTTC. When municipality m has access to FTTH

connections, then FTTHm,t is also equal to one, so that the effect of FTTH on firm produc-

tivity is given by β1 + β2. Therefore, β2 captures the additional effect on firm productivity

stemming from access to the most advanced FTTH, compared to basic UFB connections.

Equation (5) suffers from the same previously described endogeneity issue. However,

we now have two potentially endogenous variables, namely, UFBm,t and FTTHm,t, so that

at least two instrumental variables are needed. In order to consistently identify β1 and

β2, we use the interactions between OPBm and the year dummies from 2015 onward as

instruments. Given the flat trends before 2015 observed in the reduced form analysis, we

can use those interactions as instruments in a 2SLS-IV estimation of Equation (5). In short,

we use the same source of exogenous variation, namely, the distance from the closest national

backbone node. However, while the instrument Post2015×OPBm captures a one-off shift on

firm productivity induced by UFB, in this setting, the instruments allow for a more flexible

dynamics after 2015.

We know, from Table 2, that there is a positive overall effect of UFB on firm productivity.

Moreover, Figure 7 suggests that its effect takes time to materialize. The question is whether

this lagged effect is driven by basic UFB, or whether the shift that we observe in 2017

derives from the introduction of FTTH. Table 6 collects the estimated 2SLS-IV coefficients

for UFBm,t and FTTHm,t. The results show that basic UFB is the main driver of the

observed positive overall impact. The estimated β1 referring to TFP is positive, equal to

0.022, and statistically significant. A similar pattern is observed for labor productivity,

with an estimated β1 equal to 0.031 and significant at the 1% level. Moreover, FTTH
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connections also appear to be important sources of productivity gains. Having access to

FTTH connections, rather than just to basic UFB is estimated to potentiate the effect by

an additional 1.2% for TFP and 1.5% for labor productivity.

Overall, these results highlight that, although basic UFB connections are relevant drivers

of firm productivity, further investments in more advanced UFB infrastructures, such as

FTTH, significantly amplify the positive effects on enterprises.

5.4. Potential mechanisms and underlying trends

How are firms facing the advent of UFB networks? Recent empirical evidence has shown that

the radical innovations encompassed within 4IR are leading to dramatic changes in the way

firms operate, starting from the management of their human resources. In this respect, firms

are undergoing substantial reconfigurations of their workforce in favor of employees whose

skills are complementary with the new technologies, that is, high-skilled workers (Akerman

et al., 2015; Card and DiNardo, 2021).

Although we do not have firm-level information on the workforce composition, we are

nonetheless able to explore whether such a dynamics also emerges following the introduction

of UFB networks by resorting to worker-level data. In particular, we exploit LFS, a represen-

tative survey on Italian workers provided yearly by ISTAT, which collects rich information

on the characteristics of the workers, their jobs, and the firms they work in. We use LFS

data from 2014, one year before the introduction of UFB, to 2019. From the worker-level

LFS data, we construct the (aggregate) share of low-skilled workers compared with high-

skilled workers for each administrative region (20 classes), sector of economic activity (9

classes), firm size class (4 categories), and year. This variable thus provides an indicator of

the workforce composition in terms of skills in each region-sector-size combination for each

year.17 Correspondingly, we compute a measure of UFB networks at the regional level. This

measure is defined as the share of municipalities in each administrative region covered by

UFB, weighted by the municipality population (i.e., it expresses a coverage rate).

We then estimate the relationship between UFB coverage and workforce skill composition

through the following simple regression:

yr,s,d,t = α + γUFBr,t + ρZr,s,d,t + ψr,s,d,t, (6)

17We compute this share for each cell as the ratio between the number of low-skilled workers over the
total number of workers in the cell. Low-skilled occupations include blue-collar workers and apprentices,
whereas high-skilled occupations refer to white-collar workers, middle managers, and top managers. More-
over, it should be noted that the version of LFS available to the public does not provide information on the
municipality of the firm where the worker is employed. It only provides the administrative region, which we
use to construct the cells.
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where yr,s,d,t is the share of low-skilled workers compared with high-skilled workers in region

r, sector s, firms of size d, and year t; UFBr,t is our regional-level indicator of UFB coverage

in year t; Zr,s,d,t is a set of fixed effects for macro-area, sector, firm size, and year; and, finally,

ψr,s,d,t is the mean-zero error term.

Table 7 (first panel) collects the OLS estimate of UFBr,t as in Equation (6). The es-

timated coefficient is negative and significant at the 1% level, thus pointing to a negative

correlation between the diffusion of UFB and the share of low-skilled workers employed by

companies. This result points to an ongoing process of substitution of low-skilled workers

with high-skilled workers following the deployment of UFB networks, which is consistent with

the presence of complementarities between high-skilled occupations and UFB networks.

Although skills play a critical role in the ability of firms to exploit the advantages offered

by new technologies (including UFB), age could also represent a relevant dimension. Indeed,

there is strong evidence of a substantial generational divide (in favor of younger individu-

als) in the capability of using new technologies (OECD, 2018). We thus analyze whether

substitution effects emerge in this respect with a regression similar to Equation (6). Again

exploiting the LFS data, we estimate the relationship between UFB coverage at the regional

level and the share of younger workers (i.e., under-45) in each administrative region, sector,

and firm size combination, as previously defined.

Table 7 (second panel) shows the results of this test. The estimated coefficient associated

with UFBr,t is positive and significant at the 1% level, thus pointing to a positive relation-

ship between UFB diffusion and the presence of younger workers in companies. Although

of a preliminary nature, this result provides suggestive evidence that firms might also be

undergoing significant changes in their workforce composition in terms of age, possibly as

a consequence of the greater ability of younger workers to exploit the potential of UFB

connections.

6. Conclusions

In this paper, we have explored the impact of advanced information and communication

technologies on firm productivity. We leveraged on a uniquely rich data set, which collects

granular information on UFB access matched with firm-level data, from which we obtained

consistent estimates of TFP and computed labor productivity of the firms. Our empirical

strategy exploited the relative distance between each municipality and the closest national

backbone node as a source of plausibly exogenous variation.

We have found an overall positive and economically relevant impact of UFB on firm

productivity, as captured by both TFP and labor productivity. However, we detected the

presence of substantial heterogeneities across industry sectors and geographical locations. We
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only found large and significant impacts in the services sector, which, nonetheless, constitutes

the predominant sector in the Italian economy, accounting for around 70% of the total

employment. This result is consistent with the documented higher penetration of digital

technologies in the services sector, whereby these companies appear to be more able to

grasp the benefits offered by advanced online solutions. As far as the geographical location

is concerned, we found that the North-West and South of Italy are the macro-areas that

have obtained the greatest benefits from UFB, in terms of productivity gains. Interestingly,

these two areas are somewhat different. On the one hand, the North-West of Italy has

historically been (and still is) the richest and most productive area of the country, whereas

the South encompasses the most underdeveloped regions in Italy and displays the lowest

productivity levels. These effects may be explained by two different mechanisms. On the

one hand, the effect of the North-West is coherent with the idea that the more advanced

and productive firms are more able to exploit the advantages offered by digital technologies

(e.g., implementation of 4IR innovations enabled by UFB networks). On the other hand,

the effect on Southern companies might emerge because of the generally (very) low starting

productivity levels. Even though not associated with the use of cutting-edge technologies,

reaching faster broadband connections partially financed with ad hoc public programs may

have substantially increased the efficiency of the daily operations a firm needs to comply

with in the new digital scenario.

Thanks to unique information on the roll-out of both basic UFB (i.e., FTTC) and the

most advanced FTTH networks, we have also investigated whether the detected positive

impact of UFB on firm productivity is engendered by the former or the latter type of network.

We found evidence that basic UFB connections are critical drivers of productivity gains for

the firms, but FTTH connections give an additional boost to productivity. This result is

important, given the current efforts and investments of both public and private agents in

FTTH deployment. From this perspective, our results provide support for the current Italian

public policy as outlined in the Italian Recovery and Resilience Plan. The goal of achieving

a complete national coverage with full-fiber connections before the end of 2026 seems a good

policy tool to boost firm productivity and, thus, aggregate productivity.

Finally, by resorting to worker-level survey data obtained from LFS, we detected the

presence of a substantial reallocation of the workforce of firms toward more skilled and

younger individuals. This evidence, although of a preliminary nature, points to an ongoing

structural process whereby firms reshuffle their workforce to adapt to the dramatic changes

and challenges new technologies (including, UFB) imply. On the one hand, UFB entails the

use of new technologies that are complementary with high-skilled workers. On the other

hand, firms need individuals who have the necessary capabilities to use digital technologies,
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and these workers are generally - apart from being skilled - young. Further research with

matched employer-employee data could further strengthen the validity of these predictions.
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Figure 1: UFB adoption

Source: European Council and Italian Statistical Office (ISTAT).

Table 1: Sample summary statistics

Variable Mean/ Std. dev. 25th percentile median 75th percentile
percentage

Employees 15.869 31.722 4 8 16
Revenues (1,000 euros) 4,182.906 18,466.670 566 1,266 3,263
Value added (1,000 euros) 975.925 2,864.083 165 363 852
Capital (1,000 euros; PIM) 1,037.714 9,362.723 28.381 118.655 553.822
Expenditure on intermediate inputs
(1,000 euros)

2,258.042 15,762.440 92 377 1,343

Firm age (years) 19.685 13.381 9 17 28
Value added over employees (VA/L;
1,000 euros)

61.912 189.936 32.667 46.059 65.5

ln(VA/L) (labor productivity) 3.848 0.659 3.486 3.830 4.182

Âi,m,t (ACF-FE TFP; log) 3.786 0.659 3.396 3.772 4.157
UFBm,t (%) 58.6 - - - -
FTTHm,t (%) 14.7 - - - -
OPBm (km) 24.750 23.978 4.022 19.775 37.193
Manufacturing (%) 30.9 - - - -
Construction (%) 11.9 - - - -
Trade (%) 26.0 - - - -
Services (%) 31.2 - - - -
North-West (%) 34.6 - - - -
North-East (%) 26.4 - - - -
Center (%) 20.7 - - - -
South and Islands (%) 18.3 - - - -
Observations: 1,278,284
Firms: 182,612

Source: UFB-AIDA data set (for 2013-2019).
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Figure 2: Evolution of TFP and labor productivity

Source: UFB-AIDA data set (for 2013-2019).

Figure 3: Evolution of TFP by sector

Source: UFB-AIDA data set (for 2013-2019).
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Figure 4: Evolution of TFP by macro-area

Source: UFB-AIDA data set (for 2013-2019).

Figure 5: Broadband connection diffusion

Source: UFB-AIDA data set (for 2013-2019).
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Figure 6: Location of the optical backbone nodes

Source: UFB-AIDA data set (for 2013-2019).
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Figure 7: Reduced form evidence; overall effect

(a) TFP

(b) Labor productivity

Source: UFB-AIDA data set (for 2013-2019).
The thick lines represent the estimated OPBm coefficients interacted with
time dummies; the dashed lines represent 95% confidence intervals. Refer-
ence year: 2013.
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Figure 8: Reduced form evidence; by sector (TFP)

(a) Manufacturing (b) Construction

(c) Trade (d) Services

Source: UFB-AIDA data set (for 2013-2019).
The thick lines represent the estimatedf OPBm coefficients interacted with time dummies; the
dashed lines represent 95% confidence intervals. Reference year: 2013.
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Table 3: 2SLS first-stage regressions

Dep. var.: UFBm,t

Variable (1) (2) (3)
Post2015 ×OPBm −0.004*** −0.003*** −0.003***

(0.000) (0.000) (0.000)
Population (log) +1.132*** +1.278*** +1.282***

(0.152) (0.156) (0.156)
OLTm,t −0.005*** −0.004*** −0.004***

(0.000) (0.000) (0.000)

Covariates X trend yes yes -
Covariates X post - yes -
Covariates X year dummies - - yes
Year-region dummies yes yes yes
Year-sector dummies yes yes yes
Firm fixed effects yes yes yes

R-squared 0.838 0.846 0.846
First-stage F-test 127.670 69.060 69.251
Observations: 1,278,284

Source: UFB-AIDA data set (for 2013-2019).
The standard errors, reported in parentheses, are clustered at the municipality level. ***,
**, and * denote, the 1%, 5%, and 10% significance levels, respectively. For other informa-
tion, see the footnote to Table 2.

Table 4: The impact of UFB on productivity by sector

Dep var.: Âi,m,t (ACF-FE TFP) Dep var.: ln(VA/L) (labor productivity)
Manufacturing
UFBm,t +0.020 +0.025

(0.017) (0.018)
First-stage F-test: 148.091
Observations: 395,178

Constructions
UFBm,t +0.047 +0.060

(0.035) (0.039)
First-stage F-test: 104.748
Observations: 151,473

Trade
UFBm,t +0.011 −0.004

(0.024) (0.026)
First-stage F-test: 104.539
Observations: 332,892

Services
UFBm,t +0.054** +0.082**

(0.026) (0.035)
First-stage F-test: 111.024
Observations: 398,741

Source: UFB-AIDA data set (for 2013-2019).
IV estimates (Specification IV1 of Table 2). The standard errors, reported in parentheses, are clustered at
the municipality level. ***, **, and * denote the 1%, 5%, and 10% significance levels, respectively. For other
information, see the footnote to Table 2.
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Table 5: The impact of UFB on productivity by geographical area

Dep var.: Âi,m,t (ACF-FE TFP) Dep var.: ln(VA/L) (labor productivity)
North-West
UFBm,t +0.040*** +0.045***

(0.015) (0.016)
First-stage F-test: 39.375
Observations: 442,785

North-East
UFBm,t −0.038 −0.049

(0.026) (0.031)
First-stage F-test: 34.542
Observations: 337,393

Center
UFBm,t +0.019 +0.020

(0.020) (0.023)
First-stage F-test: 28.599
Observations: 264,432

South and Islands
UFBm,t +0.093* +0.119**

(0.048) (0.057)
First-stage F-test: 46.183
Observations: 233,674

Source: UFB-AIDA data set (for 2013-2019).
IV estimates (Specification IV1 of Table 2). The standard errors, reported in parentheses, are clustered at
the municipality level. ***, **, and * denote the 1%, 5%, and 10% significance levels, respectively. For other
information, see the footnote to Table 2.

Table 6: Disentangling the impact of FTTH

Dep var.: Âi,m,t (ACF-FE TFP) Dep var.: ln(VA/L) (labor productivity)
UFBm,t +0.022** (0.010) +0.031*** (0.011)

FTTHm,t +0.012* (0.007) +0.015* (0.008)

First-stage F-test: 33.227
Observations: 1,278,284

Source: UFB-AIDA data set (for 2013-2019).
IV estimates (Specification IV1 of Table 2). The standard errors, reported in parentheses, are clustered at
the municipality level. ***, **, and * denote the 1%, 5%, and 10% significance levels, respectively. For other
information, see the footnote to Table 2. Note that FTTHm,t measures the additional impact of FTTH
connections from standard UFB connections (i.e., FTTC).

33



Table 7: UFB and workforce-level dynamics

Dep. var.: Share of low-skilled workers
UFBr,t −0.098***

(0.018)
Observations: 3,547
Dep. var.: Share of young workers
UFBr,t +0.017***

(0.002)
Observations: 3,563

Source: UFB-AIDA-LFS data set (for 2014-2019).
The robust standard errors are reported in parentheses. ***, **, and * denote the 1%, 5%,
and 10% significance levels, respectively. The unit of observation of the dependent variables
is the administrative region (20 classes), the firm size (4 classes), the sector (9 classes), and
the year (6 years, from 2014 to 2019). UFBr,t refers to the average UFBm,t within each
administrative region and for each year, weighted by the population of the municipality. The
controls in both regressions include dummies for the macro-area (4 classes), firm size, sector,
and year.
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Appendices

A. Estimation of TFP

We here present a discussion on our empirical framework in the context of ACF and ACF-FE

estimations. For details on the underlying assumptions - which we summarize here - and

their implications, the reader may refer to Ackerberg et al. (2015) and Lee et al. (2019).

We estimate the following production function:

Yit = AitL
βl
itK

βk
it . (A.1)

We model the residual productivity, Ait, as:

Ait = exp{α + ωit + εit}, (A.2)

where α is the average productivity of the firms; ωit is the time- and firm-specific (i.e.,

idiosyncratic) productivity level; whereas εit is a transitory shock.A.1

In practice, the production function that we estimate is obtained by using Equation (A.2)

and by taking logs in Equation (A.1):

yit = α + βllit + βkkit + ωit + εit, (A.3)

where lowercase letters indicate natural logarithms.

First, it is assumed that the firm’s information set at t, Iit, includes both the current

and past productivity levels, {ωiτ}tτ=0, but not the future productivity levels, {ωiτ}∞τ=t+1.

Furthermore, it is assumed that the transitory shock, εit, is not predictable by the firm (i.e.,

E[εit|Iit = 0]).

Second, it is assumed that the unobserved productivity level, ωit, evolves according to

the distribution:

p(ωit+1|Iit) = p(ωit+1|ωit), (A.4)

which is known to the firm. Equation (A.4) expresses the concept that the productivity level

evolves according to a first-order Markov process.

These two assumptions imply that it is possible to decompose ωit into its conditional

A.1For the sake of simplicity, we omit the terms that include the basic control dummies (i.e., year, province,
sector, size, firm age category dummies, as well as year-sector and year-province interactions) from Equation
(A.2). The ωit term thus reflects the unobserved firm-specific productivity level once these fixed effects,
which may be correlated with the inputs, are removed.
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expectation at t− 1 and an innovation term:

ωit = E[ωit|Iit−1] + ξit = E[ωit|ωit−1] + ξit = g(ωit−1) + ξit,

where, by construction, E[ξit|Iit−1] = 0. Hence, g(ωit−1) is that part of ωit that the firm

can predict at t − 1, whereas ξit is the innovation in ωit, observed by the firm at t and,

by construction, not predictable at t − 1. In practice, firms observe ωit at t and construct

expectations on ωit at t− 1 by using g(·).
An example may help to clarify this framework. Let us suppose that a firm is experiencing

a productivity boom, that is, a series of positive productivity shocks. This is compatible

with, for instance, any technological progress introduced into the firm (e.g., a new process

technology). The set of assumptions outlined above imply that the firm knows the past and

current productivity enhancements it is experiencing. It also implies that the firm is able to

predict, with a certain degree of error, the next period’s productivity level on the basis of

the current productivity level.

Third, it is assumed that firms accumulate capital according to:

kit = κ(kit−1, iit−1),

where investments iit−1 are chosen at t−1. This implies that the firm decides upon the level

of capital to use at t one period earlier, at t − 1 (i.e., kit ∈ Iit−1). This assumption entails

that it takes a full period for new capital to be ordered, delivered, and installed. Moreover,

it implies that capital has dynamic implications (i.e., the firm’s choice of capital for period t

has an impact on the firm’s future profits). We assume that labor at t is chosen as capital,

one period earlier, thereby allowing it to have dynamic implications. This assumption is

consistent with the presence of significant labor market rigidities in the Italian labor market

(e.g., rigid employment protection legislation) and is often adopted in the literature (see, for

instance, Konings and Vanormelingen, 2015).

Fourth, it is assumed that the firm’s demand for intermediate inputs, mit, is a function

of labor, capital, and the firm’s unobserved productivity level:

mit = f(lit, kit,ωit) (A.5)

Lastly, it is assumed that the function in Equation (A.5) is strictly increasing in ωit.

Conditional on labor and capital, the higher the unobserved productivity level is, the larger

the demand for intermediate inputs.

At this point, ACF outline a two-step estimation method. Given the assumptions dis-
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cussed above, f can be inverted to deliver an expression of ωit, which is unobservable, as a

function of lit, kit, and mit, which are instead observable:

ωit = f−1(lit, kit,mit).

The inverted intermediate input demand function f−1(·) is the key to CFEs: it allows us

to “control” for the unobserved productivity level once it is plugged into the production

function. Hence, substituting f−1(·) in Equation (A.3) results in the following first-stage

equation:

yit = α + βllit + βkkit + f−1(lit, kit,mit) + εit

= Φ(lit, kit,mit) + εit
(A.6)

As is common in the literature, we proxy the f−1(·) function with a third-order polynomial

in lit, kit, and mit (Ackerberg et al., 2015). The βl and βk parameters are clearly not

identified at this stage and are subsumed in Φ(lit, kit,mit) = α+ βllit + βkkit +ωit. However,

the estimation of (A.6) produces an estimate Φ̃(lit, kit,mit) of Φ(lit, kit,mit).
A.2 Given the

guesses of βl and βk, denoted as β∗
l and β∗

k , respectively, it is possible to recover the implied

ωit, ω̃it(β
∗
l , β

∗
k)

A.3, as:

ω̃it(β
∗
l , β

∗
k) = Φ̃(lit, kit,mit)− β∗

l lit − β∗
kkit. (A.7)

As ωit is assumed to follow a first-order Markov process (i.e., ωit = g(ωit−1)+ξit) and given

ω̃it(β
∗
l , β

∗
k), it is possible to compute the implied innovations, ξ̃it(β

∗
l , β

∗
k), as the residuals of

a regression of ω̃it(β
∗
l , β

∗
k) on g(ω̃it−1(β

∗
l , β

∗
k)). Following the standard practice, we proxy the

function g(·) with a third-order polynomial in ω̃it−1(β
∗
l , β

∗
k) (Lee et al., 2019). The second step

of the procedure now recovers the parameters of interest by evaluating the sample analogues

of the moment conditions that stem from the previously stated timing assumptions:

1

N

1

T

"

i

"

t

ξ̃it(β
∗
l , β

∗
k , θ

∗, γ∗)kit = 0

1

N

1

T

"

i

"

t

ξ̃it(β
∗
l , β

∗
k , θ

∗, γ∗)lit = 0
(A.8)

The search continues over β∗
l and β∗

k until the β̃l and β̃k that satisfy Equation (A.8) are

A.2Note that these are just the predicted values from the regression in Equation (A.6).
A.3They also include the constant term α, which eventually does not matter.
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found. These are the ACF estimates of βl and βk.

The ACF-FE estimator involves only a minimal modification of the standard ACFmethod,

which can be outlined as follows. All the assumptions of ACF are maintained, except for the

assumption on the stochastic process that regulates unobserved productivity, which is gen-

eralized in the ACF-FE setting. In particular, ωit is assumed to follow a first-order Markov

process conditional on a time-invariant random variable ηi:

ωit = E[ωit|ωit−1, ηi] + ξit, (A.9)

where E[ξit|ωit−1, ηi] = 0 and E[εit|ηi = 0]. In particular, Lee et al. (2019) consider a version

of Equation (A.9) where E[ωit|ωit−1, ηi] = ηi + g(ωit−1), which results in:

ωit = ηi + g(ωit−1) + ξit. (A.10)

The first step of the ACF-FE procedure, for the above specification of ωit, is the same

as in ACF, except for the addition of the fixed-term effect ηi. It is still possible to estimate

Φ(·) from the analogue of Equation (A.6) with added firm fixed effects. In the second

stage, it is possible to estimate βl and βk proceeding as before, but this time including ηi in

the stochastic process of the unobserved productivity level, as defined in Equation (A.10),

thereby recovering the implied ωit as in (A.7) and then the implied ξit as the residuals from

a fixed effects regression of ω̃it on g(ω̃it−1), with g(·) being approximated with a third-order

polynomial (Lee et al., 2019).
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